Дипломная работа: Технічне обслуговування й ремонт електричних машин
На роторах асинхронних машин розташовується або фазна, тобто яка має фази, яких звичайно стільки ж, скільки й обмотка статора, ізольована від корпуса обмотка, або короткозамкнена. Короткозамкнена обмотка ротора складається з розташованих у пазах ротора замкнутих між собою по обох торцях ротора неізольованих стрижнів із провідникового матеріалу. Вона може бути також виконана заливанням пазів алюмінієм. Залежно від типу обмотки ротора розрізняють асинхронні двигуни з фазними роторами або асинхронні двигуни з короткозамкненими роторами. [7, с. 8]
Нормальне виконання асинхронних машин - з ротором, розташованим усередині статора. Однак для деяких приводів, наприклад привода транспортера, виявляється вигідніше розташувати обертовий ротор зовні статора. Такі машини називають зверненими або машинами із зовнішнім ротором. Вони виконуються звичайно з короткозамкненими роторами.
Серед колекторних машин змінного струму одержали поширення в основному однофазні двигуни малої потужності. Вони знаходять застосування в приводах, до яких підведення трифазний або постійний токи утруднене або недоцільний (в електрифікованому інструменті, побутовій техніці й т.п.). У машинах середньої й тим більше великої потужності колекторні машини змінного струму в цей час у СРСР не застосовуються. Виключення становлять окремі спеціальні машини, наприклад машини типу двигуна Шраге - Ріхтера.
Більшість машин постійного струму - це колекторні машини. Вони випускаються потужністю від часток вата до декількох тисяч кіловатів. Обмотки збудження машин постійного струму розташовуються на головних полюсах, закріплених на станині. Виводи секцій обмотки ротора (якорі) упаяні в пластини колектора. Колектор, що обертається на одному валу з якорем, і нерухливий щітковий апарат служать для перетворення постійного струму мережі в змінний струм якоря (у двигунах) або змінного багатофазного струму якоря в постійний струм мережі (у генераторах постійного струму).
Конструкція машин постійного струму більше складна, вартість вище й експлуатація більше дорога, чим асинхронних, тому двигуни постійного струму застосовуються в приводах, що вимагають широкого й плавного регулювання частоти обертання, або в автономних установках при живленні двигунів від акумуляторних батарей. [7, с. 8]
Гнітюче число машин постійного струму виконується з колектором - механічним перетворювачем частоти. Але існує кілька типів і безуважних машин, наприклад уніполярні генератори (мал. 5), які використовуються для одержання більших струмів (до 100 ка) при низьких напругах. У таких машинах колектор відсутній, але вони можуть працювати тільки при наявності ковзного контакту, що складається із щіток 1 і кілець 2. Постійний магнітний потік, створений струмами обмотки збудження 5, замикається по станині 3, масивному ротору 4 і двом зазорам. Постійні струми наводяться в масивному роторі й знімаються щітками. Щоб зменшити електричні втрати в роторі, у ньому роблять пази, у які укладають мідні стрижні 6. Стрижні, приварені до контактних кілець, утворять на роторі короткозамкнену обмотку.
Мал. 5. Уніполярна електрична машина
В останні роки одержали поширення також безуважні машини постійного струму з вентильним керуванням, у яких механічний перетворювач частоти замінений перетворювачем частоти на напівпровідникових елементах.
Незважаючи на велику кількість різних типів електричних машин і незалежно від їхнього конструктивного виконання, роду й числа фаз живильного струму й способів створення магнітних полів перетворення енергії в машинах відбувається тільки при наступній умові: у всіх електричних машинах у сталих режимах поля статора й ротора нерухливі відносно один одного. Поле ротора, що створюється струмами, що протікають в обмотці ротора, обертається щодо ротора. При цьому механічна частота обертання ротора й частота обертання поля щодо ротора в сумі рівні частоті обертання поля статора, тому частоти струмів у статорі й роторі жорстко зв'язані співвідношенням f 2 = f 1 s, (1)
де f 1, f 2 - частоти струму й напруги статора й ротора; s - відносна частота обертання ротора або ковзання, обумовлена частотою обертання поля статора n 1 і частотою обертання ротора машини n 2 :
s = (nl ± n 2) / n 1 (2)
У синхронних машинах обмотка збудження ротора харчується постійним струмом (f 2 = 0), і, отже, з (1) s = 0, звідки по (2) n = n 1 т. е. ротор синхронної машини обертається синхронно з полем, створеним струмами обмотки статора.
Твердий зв'язок частоти струму й частоти обертання визначив область застосування синхронних машин. Синхронні генератори є практично єдиними потужними генераторами електричної енергії на електростанціях. Синхронні двигуни з урахуванням труднощів їхнього пуску застосовуються як приводи промислових установок, що довгостроково працюють при постійній частоті обертання й не потребуючих частих пусків, наприклад як приводні двигуни повітродувок, компресорів і т.п. [7, с. 9]
В асинхронних машинах струм в обмотці ротора обумовлений ЕДС, наведеної в провідниках обмотки магнітним полем статора.
Наведення ЕДС відбувається тільки при перетинанні провідниками магнітних силових ліній поля, що можливо лише при нерівності частот обертання ротора й поля статора (n 2 ≠ n 1). Частота струму в роторі дорівнює f 2 = f 1 s, що забезпечує взаємну нерухомість поля струмів ротора й поля статора, а частота обертання ротора при цьому дорівнює n 2 = n 1(1 - s). При ковзанні s = l ротор нерухливий (f 2 = f 1), перетворення механічної енергії не відбувається й має місце трансформаторний режим роботи машини.
При живленні обмотки ротора постійним струмом машина переходить у синхронний режим роботи. При живленні ротора змінним струмом асинхронний двигун може обертатися із частотою більшої, ніж частота поля статора. Такі режими використовуються рідко через складність пуску машини: необхідні розгінний двигун або перетворювач частоти. Прикладом двигуна цього типу є двигуни Шраге - Ріхтера, у яких для перетворення частоти струму ротора використовується колектор, з'єднаний з додатковою обмоткою ротора. Регулювання частоти обертання двигуна виробляється зміною додаткової ЕДС, що вводиться в обмотку ротора, шляхом зміни положення щіток на колекторі .
У машинах постійного струму поле порушення створюється постійним струмом, а поле якоря - змінним. Перетворення постійного струму мережі в багатофазний змінний струм якоря відбувається за допомогою механічного перетворювача - колектора. Частота змінного струму якоря визначається частотою його обертання, і магнітне поле, створюване струмом якоря, нерухомо відносно поля порушення машини. [7, с. 9]
Безуважні (вентильні) машини постійного струму, як правило, звернені, тобто їхньої обмотки збудження, що харчуються постійним струмом, розташовані на обертовому роторі, а якірні обмотки - на нерухливому статорі. Частота живлення якірних обмоток задається статичним перетворювачем частоти. Умова взаємної нерухомості полів статора й ротора приводить до можливості регулювання частоти обертання вала двигуна зміною частоти живлення його якірних обмоток. Із цього погляду вентильні машини постійного струму можуть розглядатися як синхронні, обмотки змінного струму яких харчуються від перетворювача частоти.
В однофазних колекторних машинах обмотки збудження харчуються змінним струмом і створюють пульсуюче поле. Колектор перетворить однофазний струм живлення в багатофазний змінний струм із частотою, що залежить від частоти обертання ротора, при якій магнітні поля статора й ротора нерухливі відносно один одного. Через утруднену комутацію колекторні машини змінного струму виконуються лише невеликої потужності
Розділ 2. Загальна характеристика синхронного електричного двигуна і його призначення
Синхронні машини, як і інші електричні машини, оборотні, тобто вони можуть працювати як у руховому, так і генераторному режимах. Однак електропромисловість випускає синхронні машини, призначені для роботи тільки в генераторному або тільки в руховому режимі, тому що особливості роботи машини в тім або іншому режимі висувають різні вимоги до конструкції машини. [6, с. 431]
Синхронні двигуни частіше працюють у пускових режимах і повинні розвивати більший пусковий момент, чим генератори. Це накладає певні умови на конструкцію ротора: демпферну (пускову) обмотку синхронних двигунів розраховують на більші струми й більше тривалий режим.
Для порушення синхронних двигунів використовується електромашинна система порушення або тиристорна система порушення. В електромашинних системах порушення якір збудника - генератора постійного струму - з'єднується з валом синхронного двигуна жорстко або в тихохідних машинах - через кубістську передачу, що забезпечує збільшення частоти обертання збудника й зниження його маси. Системи порушення синхронних двигунів принципово не відрізняються від систем порушення генераторів.
Рівняння синхронного двигуна відрізняються від рівнянь синхронного генератора лише тим, що в них змінюється знак моменту опору.
Щоб з генераторного режиму перейти в руховий, треба змінити знак моменту опору, прикладеного до вала синхронної машини. Тоді зміниться знак кута ? і напрямок активної потужності; машина почне споживати потужність із мережі.
На кутовій характеристиці (мал. 6) область рухового режиму перебуває в зоні негативних кутів и. Стійкою частиною кутової характеристики в руховому режимі є область від 0 до - 90°. Номінальний момент, що відповідає и ном, перебуває в області 20-30°. Двигун з не явно полюсним ротором має максимум моменту при и = - 90°:
(3)
Максимальний момент залежить від розміру повітряного зазору двигуна. Чим більше зазор, тим менше xd і більше М эм мах . Однак при великому зазорі ростуть габарити машини. Межа статичної стійкості