Дипломная работа: Термодинамика химической устойчивости сплавов системы Mn-Si
; (1.4)
то получится представление функции полиномом. В свою очередь, каждый из параметров , , ,…, может зависеть от температуры:
; (1.5)
Многочлены (1.4) и (1.5) - приближенное выражение неизвестной функции . Качество приближения определяется величиной остатка рядов – той ее части, которая отбрасывается. Чтобы наше приближение удовлетворительно описывало термодинамические свойства раствора, нужно, чтобы остаток был невелик по сравнению с ошибкой экспериментов. Тогда дальнейшее уточнение функции теряет смысл.
Как показывает математическая обработка экспериментальных данных, для бинарных растворов достаточно трех параметров , , , чтобы в большинстве случаев корректно аппроксимировать термодинамические функции смешения системы.
Поэтому концентрационную (конфигурационную) энергию взаимообмена компонентов в дальнейшем будем представлять тремя членами ряда (1.4), а избыточную энергию Гиббса любой фазы с областью гомогенности будем описывать уравнением:
; (1.6)
где и - термодинамические характеристики областей регулярности двойной системы вблизи чистых компонентов;
- параметр, учитывающий отклонение от «регулярности».
Умножив части уравнения (1.6) на общее число молей компонентов в растворе, получим избыточную энергию Гиббса произвольного количества фазы. Откуда:
(1.7)
Активности компонентов двойной системы:
; (1.8)
; (1.9)
Обобщенная теория «регулярных» растворов позволяет успешно описать термодинамические свойства металлических, неметаллических и смешанных систем [4].
1.4 Термодинамические функции образования интерметаллидов
Важной особенностью химического поведения переходных металлов является способность их к образованию интерметаллических соединений.
Интерметаллиды (от лат. inter - между и металл) (интерметаллические соединения) - химические соединения двух или нескольких металлов между собой. Относятся к металлическим соединениям, или металлидам. Интерметаллиды образуются в результате взаимодействия компонентов при сплавлении, конденсации из пара, а также при реакциях в твердом состоянии вследствие взаимной диффузии (при химико-термической обработке), при распаде пересыщенного твердого раствора одного металла в другом, в результате интенсивной пластической деформации при механическом сплавлении (механоактивации). Для интерметаллидов характерны преимущественно металлический тип химической связи и специфические металлические свойства. Однако среди интерметаллидов имеются также солеобразные соединения с ионной связью (валентные соединения, образующиеся из элементов различной химической природы и представляющие собой стехиометрические соединения), например, NaAu, соединения с промежуточным характером связи - ионно-металлической и ковалентно-металлической, а также с ковалентной.
Основной отличительной чертой большинства реакций образования интерметаллидов является малая величина изменения энтропии ΔSfє по сравнению со значением для идеальной конфигурационной. Кроме того, во многих случаях величина ΔSfє имеет отрицательное значение. Это связано с существенной ролью неконфигурационных вкладов в энтропию [5].
В настоящее время известно несколько практических способов расчета энтальпий и энтропий образования бинарных интерметаллидов. Для оценки теплот образования наиболее широко применяют методику Л. Кауфмана и А. Р. Миедемы. Способ Л. Кауфмана – это расчет энергий Гиббса реакций образования промежуточных фаз из компонентов твердых растворов по экспериментальным диаграммам состояния бинарных сплавов. Для оценки теплот образования интерметаллидов при стандартной температуре больше подходит способ Миедемы. Он показал, что в случае переходных металлов или сплавов переходных металлов со щелочными, щелочноземельными и благородными металлами величина ΔfΗ° определяется двумя главными вкладами.
Первый, отрицательный вклад является следствием выравнивания химических потенциалов электронов в разнородных атомных ячейках при образовании сплава и обусловлен переносом заряда. Он пропорционален квадрату разности электроотрицательностей, в качестве меры которых принимаются величины, близкие к работе выхода электрона из чистых компонентов.
Природа второго, положительного вклада, определяется тем, что электронная плотность должна изменяться непрерывно при переходе от ячейки одного типа к ячейке другого типа.
Выражение для имеет вид:
(1.10)
где R – постоянная, зависящая от природы р-элемента (если один из компонентов сплава является р-элемент), учитывает гибридизацию р- и d- электронов; φ – некоторая функция состава сплава; Ф – электроотрицательность; – электронная плотность на границах атомных ячеек; P и Q – постоянные, зависящие от природы металлов, ΔHtr – слагаемое, которое учитывает изменение энтальпии при переходе кремния из стандартного состояния в металлическое (ΔHtr=33,5)
Постоянная Q одинакова для всех сплавов. Постоянная Р зависит от числа р- электронов второго компонента.
Важное значение для количественных расчетов имеет правильный выбор функции φ. Её вид зависит от площади контакта между атомными ячейками различных компонентов, степени упорядоченности сплава и атомных объемов компонентов. Согласно Миедеме, φ можно аппроксимировать произведением:
(1.11)
(1.12)