Дипломная работа: Управление напряжением рентгеноскопической установки
Тормозное рентгеновское и гамма-излучение широко применяются в технике, медицине, в исследованиях по биологии, химии и физике[3,4,].
Рентгеновские спектры поглощения получают, пропуская первичное рентгеновское излучение непрерывного спектра через тонкий поглотитель. При этом распределение интенсивности по спектру изменяется — наблюдаются скачки и флуктуации поглощения, которые и представляют собой рентгеновские спектры поглощения.
Рисунок 1.4- Теоретические спектры энергии (Eg) фотонов тормозного излучения в свинце и в алюминии; цифры на кривых — начальная кинетическая энергия электрона Te в единицах энергии покоя электрона mec2 » 0,511 МэВ (интенсивность I дана в относительных единицах).
Для каждого уровня рентгеновского спектра. поглощения имеют резкую низкочастотную (длинноволновую) [8,10,35].
1.3.2 Коэффициент ослабления рентгеновских лучей
Закон ослабления интенсивности рентгеновских лучей в веществе может быть получен при предположении, что доля энергии рентгеновских лучей, поглощенной при их прохождении через достаточно тонкий слой вещества, пропорциональна толщине этого слоя. Коэффициентом пропорциональности при этом является так называемый коэффициент ослабления , зависящий от атомного номера вещества Z и длины волны излучения [9,10,27,29,37].
Коэффициент называют линейным коэффициентом ослабления. Его величина зависит от атомного номера поглощающего вещества и длины волны рентгеновского излучения. Размерность линейного коэффициента ослабления [ ] = L- 1 . Физический смысл : линейный коэффициент ослабления характеризует относительное уменьшение интенсивности луча при прохождении слоя поглотителя единичной толщины[28,29].
Массовый коэффициент ослабления характеризует уменьшение интенсивности рентгеновских лучей в единице массы вещества, а произведение dx представляет собой поверхностную плотность вещества. Использование величины поверхностной плотности при проведении эксперимента позволяет исключить существенную погрешность, возникающую при измерении толщины тонких поглотителей. В случае необходимости линейный коэффициент ослабления находится умножением m на экспериментально найденную величину плотности вещества при температуре опыта.
Толщина слоя половинного ослабления убывает с возрастанием длины волны излучения.
1.3.3 Генераторы рентгеновского излучения
Рентгеновская трубка, электровакуумный прибор, служащий источником рентгеновского излучения. Такое излучение возникает при торможении электронов, испускаемых катодом, и их ударе об анод (антикатод); при этом энергия электронов, ускоренных сильным электрическим полем в пространстве между анодом и катодом, частично преобразуется в энергию рентгеновского излучения. Излучение рентгеновской трубки представляет собой наложение тормозного рентгеновского излучения на характеристическое излучение вещества анода. Рентгеновские трубки различают различают: по способу получения потока электронов — с термоэмиссионным (подогревным) катодом, автоэмиссионным (острийным) катодом, катодом, подвергаемым бомбардировке положительными ионами и с радиоактивным () источником электронов; по способу вакуумирования — отпаянные, разборные; по времени излучения — непрерывного действия, импульсные; по типу охлаждения анода — с водяным, масляным, воздушным, радиационным охлаждением; по размерам фокуса (области излучения на аноде) — макрофокусные, острофокусные и микрофокусные; по его форме — кольцевой, круглой, линейчатой формы; по способу фокусировки электронов на анод — с электростатической, магнитной, электромагнитной фокусировкой[1,2,28,29].
Спектральный состав излучения трубки зависит от выбора материала анода. Для большинства областей применения оптимальным является родиевый анод, хотя другие материалы, например молибден, хром или золото, могут быть предпочтительнее в определенных случаях. [23,24,38].
При проведении анализа все элементы, присутствующие в образце, одновременно излучают фотоны характеристической флуоресценции. Для изучения концентрации какого-либо элемента в образце необходимо из общего потока излучения, поступающего от пробы, выделить излучение такой длины волны, которая является характеристической для исследуемого элемента[28,29].
На рис. 1.5 изображена схема рентгеновской трубки для структурного анализа.
Рисунок 1.5-Схема рентгеновской трубки для структурного анализа
На рис.1.5 показано: 1- металлический анодный стакан (обычно заземляется); 2 — окна из бериллия для выхода рентгеновского излучения; 3 — термоэмиссионный катод; 4 — стеклянная колба, изолирующая анодную часть трубки от катодной; 5 — выводы катода, к которым подводится напряжение накала, а также высокое (относительно анода) напряжение; 6 — электростатическая система фокусировки электронов; 7 — анод (антикатод); 8 — патрубки для ввода и вывода проточной воды, охлаждающей анодный стакан.
1.3.4 Оптические параметры рентгеновских трубок
Различают действительные и эффективные фокусные пятна рентгеновских трубок[9,10,28].
Действительное фокусное пятно – сечение, в котором анод рентгеновской трубки пересекается электронным потоком.
Линейное фокусное пятно – действительное фокусное пятно резко выраженной прямоугольной формы, для которого характерно максимальное распределение интенсивности излучения вблизи центра прямоугольника.
Обычно для получения необходимой площади эффективного фокусного пятна при проектировании под небольшими углами выбирают отношение длины к ширине линейного фокусного пятна не менее двух.
Эффективное фокусное пятно – проекция действительного фокусного пятна на плоскость, перпендикулярную выбранному направлению. Обычно это направление совпадает с направлением центрального луча, т.е. луча, выходящего из центра фокусного пятна через центр выходного окна.
Качество рентгеновской трубки характеризуется ее «добротностью» – отношением допустимой кратковременной мощности к площади эффективного фокусного пятна. Уменьшением допустимого угла раствора рабочего пучка можно уменьшить угол среза анода и при неизменной площади эффективного фокусного пятна получить большую «добротность» трубки.
1.3.5 Электрические характеристики
В электронных рентгеновских трубках с накаливаемой нитью катода поток электронов получается путем термоэлектронной эмиссии, которая возникает при нагреве нити накала. Для того чтобы покинуть поверхность металла, электроны должны обладать энергией (работа выхода), достаточной для преодоления поверхностных сил, удерживающих электроны внутри металла. Для вольфрама эта энергия равна 4,52 эВ[28].
Теоретические статические анодные характеристики рентгеновской трубки с плоскими электродами, представляющие зависимость анодного тока, от постоянного анодного напряжения при различных неизменных значениях тока накала, показаны на рис.1.6.
Рисунок 1.6 – Теоретические статические анодные характеристики рентгеновской трубки с плоскими электродами
На восходящем участке ОАувеличение анодного напряжения вызывает увеличение анодного тока в связи с тем, что в создании анодного тока принимают участие только те термоэлектроны, скорость которых достаточна, чтобы преодолеть тормозящее поле пространственного заряда у катода рентгеновской трубки.
Напряжение, при котором достигается насыщение, называется напряжением насыщения US , при этом ток, проходящий через рентгеновскую трубку, называется током насыщения, а его сила обозначается через IS .
Реальные анодные характеристики рентгеновских трубок значительно отличаются от теоретических и зависят от конструкции трубки.
На рис.1.7 изображены реальные анодные характеристики рентгеновских трубок различной конструкции.