Дипломная работа: Управління збутовою діяльністю ДП "Електротяжмаш"

Якби на досліджуваному інтервалі часу коефіцієнти рівняння регресії, що описує тренд, залишалися б незмінними, то для побудови прогнозу досить було б використати метод найменших квадратів. Однак протягом досліджуваного періоду коефіцієнти можуть мінятися. Природно, що в таких випадках пізніші спостереження несуть більшу інформаційну цінність у порівнянні з більш ранніми спостереженнями, а отже, їм потрібно привласнити найбільшу вагу. Саме таким принципам і відповідає метод експонентного згладжування, що може бути використаний для короткострокового прогнозування обсягу продажів. Розрахунок здійснюється за допомогою экспонентно-зваженних ковзних середніх:

(1.7)

де Z - згладжений (експонентний) обсяг продажів;

t - період часу;

a - константа згладжування;

Y - фактичний обсяг продажів.

При побудові прогнозів за допомогою методу експонентного згладжування однією з основних проблем є вибір оптимального значення параметра згладжування a . Зрозуміло, що при різних значеннях a результати прогнозу будуть різними. Якщо a близька до одиниці, то це приводить до обліку в прогнозі в основному впливів лише останніх спостережень; якщо a близька до нуля, то ваги, по яких зважуються обсяги продажів у тимчасовому ряді, убувають повільно, тобто при прогнозі враховуються всі (або майже всі) спостереження. Якщо немає достатньої впевненості у виборі початкових умов прогнозування, то можна використати ітеративний спосіб обчислення a в інтервалі від 0 до 1. Існують спеціальні комп'ютерні програми для визначення цієї константи.

Казуальні методи прогнозування обсягу продажів включають розробку й використання прогнозних моделей, у яких зміни в рівні продажів є результатом зміни однієї і більше змінних.

Казуальні методи прогнозування вимагають визначення факторних ознак, оцінки їхніх змін і встановлення залежності між ними й обсягом продажів. Із всіх казуальних методів прогнозування розглянемо тільки ті, які з найбільшим ефектом можуть бути використані для прогнозування обсягу продажів. До таких методів ставляться:

- кореляційно-регресійний аналіз;

- метод провідних індикаторів;

- метод обстеження намірів споживачів і ін.

До числа найбільш широко використовуваних казуальних методів ставиться кореляційно-регресійний аналіз.

При цьому будується регресійна модель, у якій як факторні ознаки можуть бути обрані такі змінні, як рівень доходів споживачів, ціни на продукти конкурентів, витрати на рекламу й ін. Рівняння множинної регресії має вигляд:

(1.8)

де Y - прогнозований (результативний) показник; у даному випадку - обсяг продажів;

X1; X2; ...; Xn - фактори (незалежні змінні); у даному випадку - рівень доходів споживачів, ціни на продукти конкурентів і т.д.;

n - кількість незалежних змінних;

b0 - вільний член рівняння регресії;

b1; b2; ...; bn - коефіцієнти регресії, що вимірюють відхилення результативної ознаки від його середньої величини при відхиленні факторної ознаки на одиницю її виміру.

Провідні індикатори - це показники, що змінюються в тім же напрямку, що й досліджуваний показник, але випереджаючі його в часі. Наприклад, зміна рівня життя населення спричиняє зміну попиту на окремі товари, а отже, вивчаючи динаміку показників рівня життя, можна зробити висновки про можливу зміну попиту на ці товари. Відомо, що в розвинених країнах у міру збільшення доходів зростають потреби в послугах, а в країнах, що розвиваються, - у товарах тривалого користування.

Метод провідних індикаторів частіше використається для прогнозування змін у бізнесі в цілому, чим для прогнозування обсягу продажів окремих компаній. Хоча не можна заперечувати, що рівень обсягу продажів більшості компаній залежить від загальної ринкової ситуації, що склалася в регіонах і країні в цілому. Тому перед прогнозуванням власного обсягу продажів фірмам часто буває необхідно оцінити загальний рівень економічної активності в регіоні.

Отже, при прогнозуванні обсягу продажів можуть бути використані всі розглянуті вище методи. Природно, виникає питання про оптимальний метод прогнозування в конкретній ситуації. Вибір методу зв'язаний, принаймні, із трьома обмежуючими умовами:

1) точність прогнозу;

2) наявність необхідних вихідних даних;

3) наявність часу для здійснення прогнозування.

Якщо потрібен прогноз із точністю 5%, то всі методи прогнозування, що забезпечують точність 10%, можуть не розглядатися. Якщо немає необхідних для прогнозу даних (наприклад, дані тимчасових рядів при прогнозуванні обсягу продажів нового продукту), то дослідник змушений удатися до казуальних методів або експертних оцінок. Подібна ситуація може виникнути у зв'язку з терміновою потребою в прогнозних даних. У цьому випадку дослідник повинен керуватися часом, наявним у його розпорядженні, усвідомлюючи, що терміновість розрахунків може позначитися на їхній точності.

1.3 Стратегії керування збутом

Фірми мають альтернативи в організації розподілу свого продукту. При цьому в основі стратегії лежать принципова орієнтація задоволення різноманітних запитів кінцевого споживача (або на побудову такої системи розподілу, що була б ефективна, як для самої фірми, так і для посередників) і спосіб її існування, розглянутий як сукупність дій по максимальному наближенню товару до цільової групи споживачів (або навпаки, залучення споживачів до товару фірми). Вибір орієнтації й способу задоволення запитів споживачів і становить суть фірмової "політики" фірми в області збуту.

К-во Просмотров: 304
Бесплатно скачать Дипломная работа: Управління збутовою діяльністю ДП "Електротяжмаш"