Дипломная работа: Влияние микроэлементов на урожайность и качество волокна льна-долгунца

Лен интенсивно потребляет калий от всходов до цветения. Калий регулирует накопление волокна в стебле, определяет устойчивость к полеганию, повышает устойчивость льна к болезням и увеличивает семенную продуктивность растений. Лен сравнительно много потребляет калия на единицу продукции. На 1 тонну льноволокна с соответствующим количеством семян он выносит из почвы 60-65 кг/га К2 0. Потребление калия льном возрастает при внесении высоких доз калийного удобрения и высокой обеспеченности почвы обменным калием, но без увеличения урожайности. Поэтому нет необходимости внесения больших доз калия под лен. Доза калийного удобрения К90-120 обеспечит полученное урожайности более 20 ц/га волокна и 8-10 ц/га семян льна[13].

Применение под лен оптимальных доз фосфорного и калийного удобрений позволит на 20% сэкономить денежные средства на приобретение минеральных удобрений, что в денежном выражении составит более 8-10 долларов США на 1 га посева льна.

Из микроэлементов наибольшее значение имеют цинк и бор. На произвесткованных почвах они переходят в малодоступное состояние. Так, углекислый кальций осаждает цинк в виде малоподвижных цинконатов, а бор, кобальт становятся труднодоступными, что вызывает несбалансированность питания и глубокие изменения обмена веществ у растений льна. Вследствие этого лён поражается кальциевым хлорозом. Урожай и качество продукции при этом резко падает. Дефицит микроэлементов в почве можно восполнить путём опудриванием ими семян с прилипателями, а также внекорневой подкормкой в фазе “ёлочки”, совмещая эту операцию с проведением химической прополки посевов. С успехом эту задачу способны разрешить и специализированные севообороты, оптимальная кислотность почв для большинства культур в которых близка к оптимальной кислотности для льна-долгунца[2].

На бедных магнием супесчаных почвах желательно применять магнийсодержащие известковые материалы – доломитовую муку [9].

В Республике Беларусь применяются азотные удобрения (аммиачная се­литра, мочевина, сульфат аммония), фосфорные удобрения (суперфосфат, ам­мофос), калийные (хлористый и сернокислый калий). Для льна можно исполь­зовать все виды и формы этих минеральных удобрений. Калийные и фосфорные удобрения можно вносить осенью и весной. Аммофос и азотные удобрения следует вносить весной. Аммофос следует вносить весной, во избежание потерь азота при осеннем внесении.

В последние годы Институт почвоведения и агрохимии НАН Беларуси со­вместно с ОАО «Гомельский химический завод» разработали новые формы комплексных азотно-фосфорно-калийных удобрений с микроэлементами и ре­гуляторами роста растений, сбалансированные по содержанию и соотношению элементов питания для почв различного уровня плодородия (NPK 5:16:35 и 6:21:32).

Основные преимущества применения комплексных удобрений заключается в том, что все компоненты (макро-, микроэлементы и регуляторы роста растений) включены в одну гранулу и наиболее приемлемым соотношениям элементов питания и вносятся за одни проход техники, что сокращает затраты на их внесение. Наличие в удобрениях микроэлементов снижает отрицательное действие кальция при возделывании льна на почвах с pH около 6,0 и повышает устойчивость растений к кальциевому хлорозу.

Внесение минеральных удобрений под лен должно быть проведено качественно и удобрения равномерно распределены на поверхности почвы, что обеспечит выровненный неполегающий и равномерно созревающий стеблестой. Для внесения удобрений под лен необходимо применять агрегат РШУ-12, СУ-12 и др.[13].

1.4.Влияние почвенных диазотрофов на интенсивносгь ассоциативной азотфиксации под небобовыми культурами и их урожайность

Фиксация атмосферного азота микроорганизмами при тесном контакте с корнями небобовых растений, называемая ассоциативной азотфиксацией, - новое актуальное и перспективное направление в общей проблеме биологического азота. Большая экологическая значимость ассоциативной азотфиксации обусловлена широким распространением небобовых культур и ассоциативных микроорганизмов во всех климатических зонах. На долю ассоциативной азотфиксации, по данным М.М. Умарова, приходится до 70% азота, поступающего за счет биологической азотфиксации в целом. Оптимизируя свойства почвы и внося органические удобрения, продуктивность природной популяции ассоциативных азотфиксаторов можно повысить в 2 – 4 раза[29].

Сама возможность активизации азотфиксации в прикорневой зоне небобовых растений была предсказана ещё в 1926 г. С. П. Костычевым, а экспериментально подтверждалась различными исследователями при использовании балансового метода. В частности, это было показано в длительных(80-140 лет) опытах по возделыванию небобовых растений без применения азотных удобрений (Брэндбокский опыт в Англии, поля Прянишникова в СССР, опыт "вечная рожь" в ФРГ и др.). Бессменное возделывание небобовых культур (озимой ржи, ячменя, ржи, риса и др.) не приводило к заметному снижению содержания азота в почве, несмотря на ежегодное отчуждение его с урожаем, тогда как в вариантах без растений ("вечный пар") происходило непрерывное уменьшение количества гумуса и азота в почве.

К настоящему времени изучение ассоциативной азотфиксации превратилось в самостоятельный раздел учения о биологическом азоте. Показано широкое распространение ассоциативной азотфиксации, выяснены многие физиологические и биохимические особенности этого процесса, активно изучаются микроорганизмы, осуществляющие его в ассоциации с растениями, продолжается поиск активных форм ризосферных диазотрофов и создание на их основе эффективных бактериальных препаратов, приспособленных к возделываемым культурам и почвенно-климатическим условиям.

В настоящее время активными ассоциативными азотфиксаторами считаются более 60 видов бактерий, принадлежащих к 12 семействам. Но наибольшее внимание исследователей привлекают бактерии рода Azospirillum. Это связано с их высокой нитрогеназной активностью в ассоциациях с растениями, хорошей приживаемостью в корневой зоне, конкурентоспособностью при заселении зоны корня[2].

Экологической нишей, в которой протекает ассоциативное связывание атмосферного азота, является фитоплан (ризоплан и филлоплан ) – зона обитания микроорганизмов на поверхности подземных и надземных органов растений, где имеется необходимое энергетическое обеспечение в виде продуктов экзосмоса и корневого опада, существует многими другими метаболитами, а также создаются условия, способствующие активизации нитрогеназы – пониженное парциальное давление О2 , постоянный дефицит легкодоступных соединений азота, повышенная влажность, температура и др. Хотя систематическое изучение экологических особенностей ассоциативной азотфиксации началось сравнительно недавно, но уже до этого было замечено, что добавление в почву глюкозы, сахара, крахмала зелёного удобрения стимулирует азотфиксацию, причём этот эффект проявляется во всех почвах вне зависимости от их свойств. Из этих наблюдений можно сделать вывод – азотфиксирующий генофонд всех почв достаточно богат, а деятельность гетеротрофных азотфиксирующих бактерий в них лимитирована недостатком легкодоступного энергетического субстрата, например, углеводов.

Выполненные к настоящему времени многочисленные работы свидетельствуют о том, что именно фотосинтетическая деятельность растений существенно влияет на динамику и интенсивность азотфиксации в фитоплане и, в конечном счёте, повышает продуктивность её в экосистеме. Однако пока мало данных о масштабах ассоциативной азотфиксации в конкретных фитоценозах, поскольку они могут быть только на основе многократных измерений реальной скорости процесса в природной среде, являющихся пока трудоёмкими и длительными. Значительно больше реперных оценок, полученных при однократных и обычно в периоды активного развития растений. Тем не менее эти данные представляют определённый интерес как для общей характеристики ассоциативной азотфиксации, так и для накопления сведений о возможных величинах её в конкретных экосистемах.

Ассоциативная азотфиксация протекает с той или иной скоростью практически во всех почвах в прикорневом пространстве или на корнях растений самых разных мест обитания. Высокий её уровень (до 200 кг/га) обнаружен в ризосфере большого количества тропических растений (сорго, маис, сахарный тростник, рис и др.). В почвах зоны умеренного климата в ризосфере зерновых культур, корнеплодов, клубнеплодов, многолетних и однолетних трав её уровень достигал лишь 30-55 кг/га. Активность ассоциативной азотфиксации в почве зависит от наличия легкодоступного энергетического материала. Высокий уровень азотфиксации в прикорневой зоне обусловлен притоком сюда больших количеств органических веществ – корневых выделений и корневого опада, объем которых, по последним данным, составляет приблизительно от 25 до 50% продукции фотосинтеза[30].

Процесс азотфиксации подвержен влиянию сложного динамического комплекса различных факторов, вследствие чего азотфиксирующая способность почв может сильно колебаться в течение периода вегетации растений. Поэтому для оценки продуктивности ассоциативной азотфиксации в агроценозах необходимо изучение динамики процесса в течении вегетационного периода непосредственно в полевых условиях.

Результаты исследований М. М. Умарова показали, что активность азотфиксации в посевах злаковых трав (тимофеевка, овсяница луговая) на дерново-подзолистых суглинистых почвах изменялась в течении вегетации и имела два максимума: в начале колошения, а во втором укосе – в фазу цветения злаков. В почве незасеянного участка азотфиксирующая активность была в 1,5 – 2 раза ниже, чем под посевами злаков в течение вегетационного периода изменялась мало. Аналогичные закономерности получены и при изучении динамики активности азотфиксации в дерново-подзолистой супесчаной почве на полях ячменя и картофеля. Под ячменём более высокий уровень азотфиксации также соответствовал фазе начало колошения, под картофелем – фазам бутонизации и цветения. Она была значительно ниже на участках без растений, а также ночью по сравнению с днём[29].

Таким образом, стимулирующее влияние растений на деятельность диазотрофных бактерий наиболее вероятно объясняется поступлением в прикорневую зону легкодоступного энергетического материала из корневых выделений и корневого опада. Известно, то интенсивность корневых выделений возрастает в фазы активного развития растений и при высокой скорости фотосинтеза[32]. У злаков в этот период ассимиляционная поверхность растений достигает максимального размера и возрастает продуктивность фотосинтетического аппарата. Имеется ряд данных о тесной зависимости азотфиксации в ризосфере растений от фотосинтетической деятельности. В частности, только этой зависимостью можно объяснить суточную динамику азофиксации в ризосфере[14].

Более высокий уровень процесса азотфиксации в полевых условиях в ризосфере по сравнению с почвой без растений можно объяснить только массированными поступлениями в прикорневую зону легкодоступного энергетического субст

К-во Просмотров: 340
Бесплатно скачать Дипломная работа: Влияние микроэлементов на урожайность и качество волокна льна-долгунца