Дипломная работа: Влияние температуры и магнитного поля на электрическую проводимость и аккумуляцию энергии в конд
В более общем случае для двух носителей , где знаки «+» и «-» относятся к положительным и отрицательным носителям соответственно.
Т.к. , (m – подвижность), то , считая, что , и что , то , где s - коэффициент электропроводимости.
Наряду с током, обусловленным дрейфом, возникает диффузионный ток с плотностью
,
где r з – объемная плотность заряда, равная gn , D – коэффициент диффузии, определяемый соотношением Нернста-Эйнштейна.
,
тогда полный ток составит (в случае носителей одного знака)
;
.
При условии продолжительного действия поля E наступает динамическое равновесие, при котором :
.
Отсюда нетрудно получить с учетом для одномерного случая , что
или .
После интегрирования можно получить
здесь – значение r при .
Разделение носителей заряда неоднородно ввиду различия их состава, массы, подвижности. Поэтому и m , и E являются функциями координат. Среднее значение плотности тока по толщине кондуктометрической ячейки КЯ вдоль оси ОХ, перпендикулярной площади электродов будет
,
причем, согласно уравнению Пуассона
для одномерного случая .
Если в КЯ находятся и свободные и связанные (фиксированные) заряды r св и r связ , то
,
отсюда .
Тогда, считая для простоты , можно записать:
.
Пусть граничными условиями будут:
1. при ;
2. при ,
тогда, так как
,
– приращение потенциала, то
.
Это выражение можно преобразовать
,
– суммарное поле внутри КЯ. Это легко связать с поверхностной плотностью s * зарядов обоих типов .
В то же время учтя это, можно получить
Поведение можно оценить по ее производной. Пусть , тогда и
.
При этом МЖ должна быть нейтральной. Пусть полный заряд
Тогда , по модулю.
Но тогда и .
Т.к. и , где v – объем КЯ и , S – площадь, то , т.к. , а , тогда .
.
Это линейная функция, где C ¢ имеет смысл удельной электропроводности s . Следовательно, если ток протекает, то он должен подчиняться закону Ома (см. рис.).
Перенос электрического заряда в КЯ при пропускании электрического тока