Доклад: Аксиомы планиметрии

Выполнила:

Ученица 7 класса

Аулова Евгения

Астрахань 2010


Из истории аксиом

Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике. Аксиоматический метод построения научной теории заключается в следующем: выделяются основные понятия, формулируются аксиомы теории, а все остальные утверждения выводятся логическим путём, опираясь на них. Основные понятия выделяются следующим образом. Известно, что одно понятие должно разъясняться с помощью других, которые, в свою очередь, тоже определяются с помощью каких-то известных понятий. Таким образом, мы приходим к элементарным понятиям, которые нельзя определить через другие. Эти понятия и называются основными. Когда мы доказываем утверждение, теорему, то опираемся на предпосылки, которые считаются уже доказанными. Но эти предпосылки тоже доказывались, их нужно было обосновать. В конце концов, мы приходим к недоказываемым утверждениям и принимаем их без доказательства. Эти утверждения называются аксиомами. Набор аксиом должен быть таким, чтобы, опираясь на него, можно было доказать дальнейшие утверждения. Выделив основные понятия и сформулировав аксиомы, далее мы выводим теоремы и другие понятия логическим путём. В этом и заключается логическое строение геометрии. Аксиомы и основные понятия составляют основания планиметрии. Так как нельзя дать единое определение основных понятий для всех геометрий, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Таким образом, при аксиоматическом построении геометрической системы мы исходим из некоторой системы аксиом, или аксиоматики. В этих аксиомах описываются свойства основных понятий геометрической системы, и мы можем представить основные понятия в виде объектов любой природы, которые обладают свойствами, указанными в аксиомах. После формулировки и доказательства первых геометрических утверждений становится возможным доказывать одни утверждения (теоремы) с помощью других. Доказательства многих теорем приписываются Пифагору и Демокриту. Гиппократу Хиосскому приписывается составление первого систематического курса геометрии, основанного на определениях и аксиомах. Этот курс и его последующие обработки назывались "Элементы". Потом, в III в. до н.э., в Александрии появилась книга Евклида с тем же названием, в русском переводе "Начала". От латинского названия "Начал" произошёл термин "элементарная геометрия". Несмотря на то, что сочинения предшественников Евклида до нас не дошли, мы можем составить некоторое мнение об этих сочинениях по "Началам" Евклида. В "Началах" имеются разделы, логически весьма мало связанные с другими разделами. Появление их объясняется только тем, что они внесены по традиции и копируют "Начала" предшественников Евклида. "Начала" Евклида состоят из 13 книг. 1 - 6 книги посвящены планиметрии, 7 - 10 книги - об арифметике и несоизмеримых величинах, которые можно построить с помощью циркуля и линейки. Книги с 11 по 13 были посвящены стереометрии. "Начала" начинаются с изложения 23 определений и 10 аксиом. Первые пять аксиом - "общие понятия", остальные называются "постулатами". Первые два постулата определяют действия с помощью идеальной линейки, третий - с помощью идеального циркуля. Четвёртый, "все прямые углы равны между собой", является излишним, так как его можно вывести из остальных аксиом. Последний, пятый постулат гласил: "Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то, при неограниченном продолжении этих двух прямых, они пересекутся с той стороны, где углы меньше двух прямых". Пять "общих понятий" Евклида являются принципами измерения длин, углов, площадей, объёмов: "равные одному и тому же равны между собой", "если к равным прибавить равные, суммы равны между собой", "если от равных отнять равные, остатки равны между собой", "совмещающиеся друг с другом равны между собой", "целое больше части". Далее началась критика геометрии Евклида. Критиковали Евклида по трём причинам: за то, что он рассматривал только такие геометрические величины, которые можно построить с помощью циркуля и линейки; за то, что он разрывал геометрию и арифметику и доказывал для целых чисел то, что уже доказал для геометрических величин, и, наконец, за аксиомы Евклида. Наиболее сильно критиковали пятый постулат, самый сложный постулат Евклида. Многие считали его лишним, и что его можно и нужно вывести из других аксиом. Другие считали, что его следует заменить более простым и наглядным, равносильным ему: "Через точку вне прямой можно провести в их плоскости не более одной прямой, не пересекающей данную прямую".

Критика разрыва между геометрией и арифметикой привела к расширению понятия числа до действительного числа. Споры о пятом постулате привели к тому, что в начале XIX века Н.И. Лобачевский, Я. Бойяи и К.Ф. Гаусс построили новую геометрию, в которой выполнялись все аксиомы геометрии Евклида, за исключением пятого постулата. Он был заменён противоположным утверждением: "В плоскости через точку вне прямой можно провести более одной прямой, не пересекающей данную". Эта геометрия была столь же непротиворечивой, как и геометрия Евклида. Модель планиметрии Лобачевского на евклидовой плоскости была построена французским математиком Анри Пуанкаре в 1882 г. На евклидовой плоскости проведём горизонтальную прямую. Эта прямая называется абсолютом (x). Точки евклидовой плоскости, лежащие выше абсолюта, являются точками плоскости Лобачевского. Плоскостью Лобачевского называется открытая полуплоскость, лежащая выше абсолюта. Неевклидовы отрезки в модели Пуанкаре - это дуги окружностей с центром на абсолюте или отрезки прямых, перпендикулярных абсолюту (AB, CD). Фигура на плоскости Лобачевского - фигура открытой полуплоскости, лежащей выше абсолюта (F). Неевклидово движение является композицией конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту. Два неевклидовых отрезка равны, если один из них неевклидовым движением можно перевести в другой. Таковы основные понятия аксиоматики планиметрии Лобачевского. Все аксиомы планиметрии Лобачевского непротиворечивы. Определение прямой следующее: "Неевклидова прямая - это полуокружность с концами на абсолюте или луч с началом на абсолюте и перпендикулярный абсолюту". Таким образом, утверждение аксиомы параллельности Лобачевского выполняется не только для некоторой прямой и точки A, не лежащей на этой прямой, но и для любой прямой и любой не лежащей на ней точки A. За геометрией Лобачевского возникли и другие непротиворечивые геометрии: от евклидовой отделилась проективная геометрия, сложилась многомерная евклидова геометрия, возникла риманова геометрия (общая теория пространств с произвольным законом измерения длин) и др. Из науки о фигурах в одном трёхмерном евклидовом пространстве геометрия за 40 - 50 лет превратилась в совокупность разнообразных теорий, лишь в чём-то сходных со своей прародительницей - геометрией Евклида.

Аксиомы планиметрии

Аксиомы принадлежности

- Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

- Через любые две точки можно провести прямую, и только одну.

Аксиомы расположения

- Из трех точек на прямой одна и только одна лежит между двумя другими.

- Прямая разбивает плоскость на две полуплоскости.

Аксиомы измерения

- Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумму длин частей, на которые он разбивается любой его точкой.

- Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180 градусов. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

Аксиомы откладывания

- На любой полупрямой от ее начальной точки можно отложить отрезок, заданной длины, и только один.

- От любой полупрямой в заданную полуплоскость можно отложить угол заданной градусной мерой, меньшей 180 градусов, и только один.

- Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой.

Аксиома параллельности

- Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Евклид

Биография

Евклид (иначе Эвклид) – древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения о Евклиде крайне скудны. Известно лишь, что учителями Евклида в Афинах были ученики Платона, а в правление Птолемея I (306-283 до н.э.) он преподавал в Александрийской академии.

Евклид – первый математик александрийской школы. Евклид – автор ряда работ по астрономии, оптике, музыке и др. Арабские авторы приписывают Евклиду и различные трактаты по механике, в том числе сочинения о весах и об определении удельного веса. Умер Евклид между 275 и 270 до н. э.

Начала Евклида

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино. Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»). В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII–IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строится чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским. В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н.э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.). Начала предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. Комментарии к Началам в античности составляли Герон, Порфирий, Папп, Прокл, Симпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу. В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.

Другие сочинения Евклида

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 511
Бесплатно скачать Доклад: Аксиомы планиметрии