Доклад: Астрономические причины хронологических сдвигов
Аспекты небесных тел являются важными параметрами гороскопа, это, конечно, не означает того, что прочие параметры можно опустить. Но в дальнейшей части я этими прочими пренебрегу, сосредоточившись на аспектах планет известных в 16 веке: Меркурия, Венеры, Луны, Марса, Юпитера и Сатурна, а так же Солнца. Меня будут интересовать (квази)период повторения этих аспектов. И для его вычисления надо учесть, что угловая величина каждого аспекта имеет небольшой допуск. Вот как об этом пишут в [9, стр. 102]: "... отдельные оценки углов, которые даёт аспект, имеют допуск от 2 градусов до 10 градусов. Информацию об этом мы получим из следующей таблицы, где даны диапазоны углов (называемые орбитами), соответствующие тем или иным аспектам:
соединение от -5 градусов до +5 градусов
семисекстиль от 29 градусов до 31 градуса
..."
Ясно, что подобная строгость для аспектов возможна лишь при гораздо большей точности определения положения планет, для чего нужны эфемериды, выпущенные в конце 16 века, или компьютерные программы - ведь не каждый день пригоден для необходимых наблюдений по множеству причин, либо же нужна точная теория планет. Без этого придётся использовать ещё большие допуски. Например, в индийской астрологии, носящей черты архаичности, строгость допусков (орбов) гораздо меньшая [12, стр. 49]:
Далее на странице 58 перечисляются аспекты-связки планет в количестве 23 шт. - некоторые из "великого множества". Дана ссылка на вдохновляющую названием книгу Рамана "300 важных комбинаций".
АСТРОЛОГИЧЕСКАЯ ГИПОТЕЗА
Теперь, после короткого введения в астрологию, я могу уточнить астрологическую гипотезу возникновения хронологических сдвигов:
Хронологи 16 века, предположительно И. Скалигер или (и) его отец, датировали опорные события глобальной хронологической карты следующим образом. Характеру события, как его понимали, сопоставляли по астрологической науке аспекты планет или целый гороскоп, а затем подбирали подходящую дату, исходя из астрономических и математических знаний, которыми располагали. При этом каждому набору аспектов (в зависимости от выбранного орба) может соответствовать несколько датировок. Разность между двумя решениями называется квазипериодом этих аспектов (поскольку при сложении квазипериодов складываются и соответствующие допуски, могущие выйти за величину орба, то они не обязаны быть настоящими периодами). В итоге, эти квазипериоды породили хронологические сдвиги скалигеровской хронологической карты.
Внутри этой гипотезы есть много неявных допущений. Одно из самых коварных таково. Астрологи сумели так характеризовать дубликатные события, что они приобрели одинаковые астрологические характеристики, по крайней мере, в отношении аспектов. То есть, они обнаружили числовые инварианты события, независимые от конкретного изложения его в виде текста. И поскольку хотя бы один из дубликатов, как мы надеемся, стоит всё же на своём месте временной шкалы - этот факт можно расценить как триумф астрологии 16 века. Другое объяснение мне кажется более правильным: все дубликаты, разнесённые на "астрологические интервалы",- фантомны. Косвенным подтверждением последней гипотезы, служит существование весьма небольшого количества "неастрологических" хронологических сдвигов, то есть таковых, которые не присутствуют среди квазипериодов любых возможных аспектов. Некоторые следствия из этих рассуждений будут изложены в конце моей части работы.
Теперь выясним - что означает повторение аспекта двух планет (или планеты и Солнца)? При ответе будем исходить из гелиоцентрической системы, принятой в астрономиии. Планеты солнечной системы подразделяются на внутренние - Меркурий и Венеру, внешние - Марс, Юпитер, Сатурн (и другие, в 16 веке неизвестные), а так же Луну - спутник Земли. Внутренние планеты находятся к Солнцу ближе Земли и поэтому имеют ограниченный аспект по отношению к Солнцу. Наибольшее отклонение (элонгация) Меркурия от Солнца, как оно видится с Земли, составляет 29 градусов, следовательно, он может находиться только в соединении или семисекстиле с Солнцем. Наибольшая элонгация Венеры - 48 градусов, что может соответствовать соединению, семисекстилю или семиквинтилю. Внешние планеты и Луна могут иметь любой аспект с Солнцем. Повторение аспекта двух внешних планет означает, что более быстрая из них, ближайшая к Солнцу, обогнала дальнюю на целое число кругов (с точностью до орба). Повторение аспекта по отношению к Солнцу внешней планеты, означает, что Земля обогнала эту планету на целое число кругов. В этом рассуждении я пренебрегаю эллиптичностью орбит внешних планет и Земли, это допустимо тем более, что они имеют небольшой эксцентриситет (напомню, что мы рассматриваем только планеты известные в 16 веке), и, таким образом, возможная погрешность поглощается орбом. Те же рассуждения верны и в отношении Луны - надо лишь помнить, что в геоцентрической системе принятой в астрологии, Луна - самое быстровращающееся вокруг Земли тело.
Совсем иначе происходит, когда повторяется аспект внутренней планеты по отношению к любой иной. Дело в том, что с Земли мы можем наблюдать только элонгацию этой планеты, и если она не является максимальной из возможных, то она повторяется дважды на интервале синодического оборота планеты (от одного нижнего соединения, когда планета расположена строго между Землёй и Солнцем, до следующего такового же).
Таким образом, повторы аспектов внешних планет и Солнца не зависят от самих аспектов и вычисляются через величины периодов синодических оборотов (время от одного геоцентрического соединения планеты с Солнцем до следующего). Тоже самое верно и в отношении Луны. А повторы аспекта внутренней планеты состоит из двух почти периодических серий, смещение между которыми зависит от этого аспекта. К тому же Меркурий имеет сильно эллиптическую орбиту и весьма сомнительно, что в 16 веке могли сколько-нибудь точно предсказывать его поведение в будущем или прошлом. Этот факт можно пронаблюдать на следующем примере, взятом из книги [11, стр. 140-141]. Там приводится натальная карта (гороскоп рождения) датского короля Христиана II. Взятый, как утверждается, из книги конца 16 века: Гаркеус "Astrologiae methodus", Basil. 1576.
Альфред Леманн, автор [11], пишет, что у Гаркеуса гороскоп был несколько (!?) неполон и недостающие части были добавлены самим Леманном, и это, очевидно, произошло до Копенгагенского издания его книги в 1893 году.
Рис. 1 Гороскоп Христиана II.
Что же мы видим на этом гороскопе, озаглавленном: Christiernus II REX DANIAE Natus, 1481 Julii 1, 18h 16m
Солнце | 18 гр. Рака |
Луна | 19 гр. Девы |
Меркурий | 29 гр. Тельца |
Венера | 29 гр. 40' Льва |
Марс | 23 гр. Рака |
Юпитер | 11 гр. Льва |
Сатурн | 7 гр. Весов |
Сразу видим несколько интересных моментов. Вычислим элонгацию Меркурия:
18 гр. Рака = 90 + 18 гр. = 108 гр. (Солнце)
29 гр. Тельца = 30 + 29 гр. = 59 гр. (Меркурий)
108 - 59 гр. = 49 гр. - элонгация Меркурия, что гораздо больше допустимого значения.
Но, может быть, в книге Леманна опечатка? Почитаем анализ гороскопа, сулящий нативу долгую жизнь [11, стр. 141]: "В вышеприведённом гороскопе Венера не стоит в аспекте ни с какой другой планетой, кроме Меркурия, они "глядят друг на друга в квадратуре". Но так как значение Меркурия определяется по звезде, с которой он стоит в аспекте, то в квадратуре с Венерой нет неблагоприятного признака."
Проверяем аспект Венеры с Меркурием по гороскопу:
29 гр. 40' Льва = 120 гр. + 29 гр. 40' = 149 гр. 40' (Венера)
149 гр. 40' - 59 гр. = 90 гр. 40' - квадратура.
Дальнейший анализ гороскопа по [11, стр. 143]: "Наш гороскоп показывает, что между Меркурием и Марсом имеется угол 54 гр. Властитель рождения, Меркурий, должен таким образом быть направляем углом 54 гр., чтобы образовывать многозначительное сочетание с несущим несчастие Марсом, который угрожает рождённому тюрьмою... так как астрологи считают градус за год, то мы узнаём, что Христиану II это несчастье грозит через 50 и ещё несколько лет после рождения. Действительно, ему был 51 год, когда он был заключён в Зондербург (на Альсене). Однако вычисления астрологов не всегда попадают так в цель..."
Проверяем аспект Меркурия с Марсом:
23 гр. Рака = 90 + 23 гр. = 113 гр. (Марс)
113 - 59 гр. = 54 гр. - именно этот аспект описан в цитированном тексте.
Таким образом, мы убеждаемся, что анализ гороскопа построен на ошибочном положении Меркурия. Сколь велика эта ошибка - мы можем вычислить с помощью таблиц Н.А. Морозова, составленных в начале XX века [13] или с помощью астропрограммы ZET 5.10 написанной Анатолием Зайцевым из Севастополя (новые версии можно свободно скачать по адресу http://astrologer.ru/software/ZET/index.html.ru
Рис. 2 Натальная карта Христиана II, согласно ZET 5.10
МОРОЗОВ | ZET 5.10 | |
Солнце | 19 гр. Рака | 18 гр. 12' Рака |
Луна | 15 гр. Девы | 12 гр. 29' Девы |
Меркурий | 0 гр. 12' Рака | 28 гр. 19' Близнецов |
Венера | 3 гр. Девы | 0 гр. 32' Девы |
Марс | 24 гр. Рака | 24 гр. 3' Рака |
Юпитер | 12 гр. Льва | 11 гр. 51' Льва |
Сатурн | 8 гр. Весов | 7 гр. 23' Весов |
Вычислим предыдущие аспекты уже по ZET 5.10:
И прекрасный анализ гороскопа разрушается. Я предполагаю, что абсурдно большая элонгация Меркурия у Гаркеуса в 16 веке получилась не из-за ошибки наблюдения или астрономического вычисления, а ради подгонки под астрологический ответ: надо было получить 50 градусов аспекта с Марсом, поскольку в 51 год Христиан II попал в тюрьму. Этот пример может служить хорошей иллюстрацией к моей астрологической гипотезе возникновения сдвигов. А заодно достаточно обосновывать исключение Меркурия из дальнейших рассмотрений на некоторое время. Но у вышеприведённого гороскопа есть ещё один интересный признак: координаты планет в нём измерены в градусах и лишь у Венеры, подошедшей к границе своего знака, указаны минуты кратные 10 (или треть градуса до начала следующего знака). Несмотря на то, что в конце 16 века уже были инструменты для измерения угловых минут (Тихо Браге делал измерения с точностью до минуты), тогда это не имело никакого астрологического смысла. И вот нас уверяют, что существуют античные гороскопы указывающие минутную угловую величину (и даже секундную!?), и это тогда, когда временной интервал измерялся только с точностью до часа - ведь минутная стрелка часов была изобретена только в 15 веке. Это несоответствие заявляемой точности даёт весомый повод усомниться в древности подобных гороскопов, к которым по тем же причинам, без сомнений, можно отнести и гороскоп Алексея Комнина (якобы 12 века), приводимый в "антифоменковской" публикации астролога Дениса Куталёва (http://www.spnet.ru/~brol/denis/denis/Fomenko.htm ). ФОРМУЛИРОВКА ЗАДАЧИСейчас мы начнём искать квазипериоды повторения аспектов внешних планет, Луны и Солнца. Орбы аспектов не станем фиксировать заранее. Предполагаем, что Земля и внешние планеты, до Сатурна, двигаются равномерно вокруг Солнца по круговым орбитам, а Луна движется равномерно по круговой орбите вокруг Земли. Тогда в геоцентрической системе, принятой в астрологии, внешние планеты и Луна приобретают синодические периоды обращения (периоды соединения с Солнцем). Пусть Tл, Tм, Tю, Tс такие периоды Луны, Марса, Юпитера и Сатурна, соответственно, измеренные в днях на один оборот. Мы ищем "Общее кратное" этих чисел D, то есть, число дней, в которые все T* укладываются целое число раз с небольшой погрешностью, зависящей от орба E, который измерен в долях круга. Таким образом, D/T* отличаются от ближайшего к ним целого числа менее, чем на E. Что записывается в виде системы двойных неравенств:
-E < D/Tл - Nл < E N* - являются неизвестными натуральными числами, орб E выбираем таким, каким считаем нужным. D может быть и дробным, но можно ограничиться (увеличивая при необходимости орб) только натуральными значениями. Будем считать, что D изменяется в диапазоне от 1 до 2000x365,25 дней, поскольку на интервале времени более 2 тысяч лет начинают значительную роль играть погрешности округления величин T*. В настоящий момент неизвестно - каковыми значениями синодических периодов пользовались астрологи и астрономы 16 века. Но мы видим, что система неравенств даёт решения непрерывно зависящие от T*, если E взято достаточно большим. Поэтому можно решить эту систему исходя из современных данных, надеясь, что полученные таким образом решения будут близки к тем, которые можно было бы получить в 16 веке, и в будущем, при получении необходимой информации, перерешать систему аналогичным образом. Согласно http://www.solarviews.com/eng сидерические (звёздные) периоды обращения таковы (в днях на круг): |
Меркурий | 87,969 |
Венера | 224,701 |
Земля | 365,256 |
Луна | 27,32166 |
Марс | 686,98 |
Юпитер | 4332,71 |
Сатурн | 10759,50 |
Считая последнюю цифру результатом округления, обращением соответствующей величины получим сидерические средние скорости (в кругах на день):
Земля | 0,002737806 +/- 4x10^{-9} |
Луна | 0,036600997 +/- 7x10^{-9} |
Марс | 0,001455646 +/- 11x10^{-9} |
Юпитер | 0,00023080243 +/- 27x10^{-11} |
Сатурн | 0,00009294112 +/- 5x10^{-11} |
Вычитая из звёздных скоростей планет скорость Земли получим средние угловые синодические скорости планет (в оборотах на день):
Луна | +0,033863191 +/- 12x10^{-9} |
Марс | -0,001283210 +/- 15x10^{-9} |
Юпитер | -0,002507004 +/- 5x10^{-9} |
Сатурн | -0,002644865 +/- 5x10^{-9} |
Луна геоцентрически обгоняет Солнце, поэтому её скорость положительна, прочие планеты, наоборот, отстают, и поэтому их скорости получились отрицательными, что для нашей проблемы несущественно. Обращая полученные величины, найдём синодические периоды обращения планет (в днях на оборот):
Луна | 29,53059 +/- 2x10^{-5} |
Марс | 779,933 +/- 9x10^{-3} |
Юпитер | 398,8825 +/- 9x10^{-4} |
Сатурн | 378,0911 +/- 7x10^{-4} |
Предыдущую систему неравенств можно записать через средние угловые скорости, где V*=1/T*:
-E < D*Vл - Nл < E
-E < D*Vм - Nм < E
-E < D*Vю - Nю < E
-E < D*Vс - Nс < E
Величина D, которую мы ищем, ограничена 2 тысячами лет в днях, - посмотрим какие погрешности мы можем получить, если пренебрежём поправками к скоростям:
15x10^{-9}x360x2000x365,25 = 3,9447 градусов
Таким образом, в орбе надо учитывать дополнительн?