Доклад: Биография Пифагора

Очевидно? Это ведь произведение затраченного времени на скорость!

Теперь попробуем взглянуть на то же самое явление из другой системы отсчета, с другой точки зрения, например, из космического корабля, пролетающего мимо бегающего луча со скоростью v . Раньше мы поняли, что при таком наблюдении скорости всех тел изменятся, причем неподвижные тела станут двигаться со скоростью v в противоположную сторону. Предположим, что корабль движется влево. Тогда две точки, между которыми бегает зайчик, станут двигаться вправо с той же скоростью. Причем, в то время, пока зайчик пробегает свой путь, исходная точка A смещается и луч возвращается уже в новую точку C .

Вопрос: на сколько успеет сместится точка (чтобы превратиться в точку C), пока путешествует световой луч? Точнее, опять спросим о половине данного смещения! Если обозначить половину времени путешествия луча буквой t' , а половину расстояния AC буквой d , то получим наше уравнение в виде:

v * t' = d

Буквой v обозначена скорость движения космического корабля. Опять очевидно, не правда ли?

Другой вопрос: какой путь при этом пройдет луч света? (Точнее, чему равна половина этого пути? Чему равно расстояние до неизвестного объекта?)

Если обозначить половину длины пути света буквой s , то получим уравнение:

c * t' = s

Здесь c - это скорость света, а t' - это тоже самое время, которые мы рассматривали на формулы выше.

Теперь рассмотрим треугольник ABC . Это равнобедренный треугольник, высота которого равна l . Да-да, тому самому l , которое мы ввели при рассмотрении процесса с неподвижной точки зрения. Поскольку движение происходит перпендикулярно l , то оно не могло повлиять не нее.

Треугольник ABC составлен из двух половинок - одинаковы прямоугольных треуголников, гипотенузы которых AB и BC должны быть связаны с катетами по теореме Пифагора. Один из катетов - это d , которое мы рассчитали только что, а второй катет - это s , который проходит свет, и который мы тоже рассчитали.
Получаем уравнение:

s2 = l2 + d2

Это ведь просто теорема Пифагора, верно?

В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку, это явилось следствием открытий итальянского астронома Скиапарелли (открыл на Марсе каналы которые долгое время считались исскуственными) и др. Естественно, что вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно, было решено передать обитателям Марса сигнал в виде теоремы Пифагора.

Неизвестно, как это сделать; но для всех очевидно, что математический факт, выражаемый теоремой Пифагора имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

Мобильная связь

В настоящее время на рынке мобильной связи идет большая конкуренция среди операторов. Чем надежнее связь, чем больше зона покрытия, тем больше потребителей у оператора. При строительстве вышки (антенны) часто приходится решать задачу: какую наибольшую высоту должна иметь антенна, чтобы передачу можно было принимать в определенном радиусе (например радиусе R=200 км?, если известно. что радиус Земли равен 6380 км.)
Решение:
Пусть AB= x, BC=R=200 км, OC= r =6380 км.
OB = OA + AB
OB = r + x
Используя теорему Пифагора, получим ответ.
Ответ: 2,3 км.

Вступление

Многие при имени Пифагор вспоминают его теорему. Но неужели мы можем встречать эту теорему только в геометрии? Нет, конечно, нет! Теорема Пифагора встречается в разных областях наук. Например: в физике, астрономии, архитектуре и в других. Но так же Пифагор и его теорема воспеты в литературе.

Существуют много легенд, мифов, рассказов, песен, притчей, небылиц, анекдотов, частушек об этой теореме. Ниже приводятся примеры каждого вида, перечисленного здесь…

Легенды и мифы

К-во Просмотров: 540
Бесплатно скачать Доклад: Биография Пифагора