Доклад: Динамика частиц
Если При помощи секторной скорости это же запишется так:
В случае замкнутой системы Мы получили закон сохранения кинетического момента замкнутой системы. Под действием внутренних сил кинетический момент замкнутой системы не изменяется.
Закон сохранения и превращения механической энергии системы частиц
Умножим уравнение движения материальной точки системы на ее элементарное перемещение , учтем деление сил на внутренние и внешние. Тогда изменение кинетической энергии частицы произойдет за счет работы как внутренних, так и внешних сил:
Для всех частиц системы ( в силу аддитивности энергии и работы):
Дифференциал (изменение) кинетической энергии системы равен сумме элементарных работ внутренних и внешних сил, действующих на частицы системы.
Представим потенциальную энергию системы в виде слагаемых:
где первое слагаемое обусловлено взаимодействием частиц системы между собой, а второе слагаемое -потенциальная энергия частиц во внешнем поле.
Полная механическая энергия системы равна:
E = T + U .
В случае, когда частицы системы находятся в поле потенциальных сил, явно не зависящих от времени dU / dt =0.
С учетом этого условия, после умножения каждого уравнения движения каждой материальной точки системы на ее скорость и суммируя все эти уравнения, получим:
Это уравнение утверждает, что в замкнутой системе материальных точек, находящихся в стационарном потенциальном поле, в процессе движения сохраняется скалярная величина :
Такие системы называются консервативными.
Закон сохранения и превращения механической энергии является частным случаем всеобщего закона природы – закона сохранения и превращения энергии (ЗСПЭ).
Итак, мы имеем 7 уравнений, выражающих законы сохранения и изменения в механической системе:
При определенных условиях они приводят к законам сохранения. В случае замкнутой системы при отсутствии внутренних превращений механической энергии в другие виды энергии, законы сохранения дают 7 первых интегралов и 3 вторых интегралов движения:
т.е. десять классических интегралов механики.
Все законы сохранения были получены из уравнений движения Ньютона. Поэтому они связаны со свойствами пространства и времени, которые постулируются в классической механике.
Сохранение импульса связано с однородностью пространства, в силу которой механические свойства замкнутой системы не меняются при любом параллельном переносе системы как целого.
Сохранение момента связано с изотропией пространства, в силу которой механические свойства замкнутой системы не изменяются при любом повороте системы как целого.
Сохранение механической энергии связано с однородностью времени, в силу которой механические свойства замкнутой системы не меняются при любом «переносе» системы во времени.