Доклад: Фундаментальный констант
Аннотация
Главными фундаментальными константами обычно считают гравитационную константу (G ), постоянную Планка (h ) и скорость света (c ). Принято считать, что эти константы являются независимыми. Исследования показали, что истинно фундаментальными оказалисьне константы G, h, c, а совсем другие константы [1, 2, 3, 4]. Их оказалось пять. Это следующие константы:
- Фундаментальный квант действия hu (hu =7,69558071(63) • 10-37 J s).
- Фундаментальная длина lu (lu =2,817940285(31) • 10-15 m).
- Фундаментальный квант времени tu (tu =0,939963701(11) • 10-23 s).
- Постоянная тонкой структуры α (α =7,297352533(27) • 10-3 )
- Число π (π=3,141592653589).
Выявлено, что важнейшие фундаментальные физические константы являются составными константами и состоят из этих пяти констант. Эти пять констант претендуют на онтологический статус, поэтому они названы "уни версальными суперконстантами " [1, 2, 3, 4].
1. Являются ли важнейшие физические константы фундаментальными?
Главными фундаментальными константами обычно считают гравитационную константу (G ), постоянную Планка (h ) и скорость света ( и тот факт, что в фундаментальной физике многие ученые применяют такую систему единиц, в которой они равны 1. Особенно большую значимость в глазах ученых эта тройка констант приобрела после того, как М.Планк, путем их комбинации, открыл новые единицы длины массы и времени, которые были названы "планковские единицы".
Константами G , h, c, в их различных комбинациях, оперируют наиболее важные физические теории. Так, например, теория тяготения Ньютона является G -теорией [11]. Общая теория относительности является классической (G, c )-теорией. Релятивистская квантовая теория поля является квантовой (h , c )-теорией [11]. Каждая из этих теорий оперирует одной или двумя размерными константами. Открытие планковских единиц - планковской длины, массы и времени породило у ученых надежду на возможность создания новой квантовой теории на основе трех констант G , h, c . Однако попытки создать единую квантовую теорию электромагнитных полей, частиц и гравитации на ос нове трех размерных констант - (G, h, c )-теорию, окончились безрезультатно. Такой теории до сих пор нет, хотя на ее создание возлагались очень большие надежды [11]. Почему так случилос ь? Очевидно потому, что тройка констант (G, h, c ,) по каким-то причинам не может выступать в качестве константного базиса квантовой теории. В этой связи возникает правомерный вопрос: м ожно ли считать эти константы первичными и независимыми? Трудности в создании (G, h, c )-теории указывают на обратное. По всей видимости, существуют совершенно другие константы, которые являются и независимыми, и первичными и, соответственно, истинно фундаментальными. Очевидно от таких первичных констант должны происходить все основные физические константы, в том числе и константы G, h, c . Поскольку первичный статус констант G, h, c долгое время был вне сомнений, то, естественно, задача поиска онтологического базиса фундаментальных физических конс тант остро не стояла.
Неудачи в создании (G, h, c )-теории и большое количество других фундаментальных физических констант, среди которых трудно отдать какой-нибудь константе предпочтение, выдвигают на пе рвый план задачу поиска онтологического базиса физических констант. Современная физика накопила уже около 300 фундаментальных констант [6]. Сотни констант и все фундаментальные! Почему такое большое количество констант считаются фундаментальными? Если к ним подходить как к истинно фундаментальным константам, то их явно много. Если исходить из того, что основу мира составляет единая материальная сущность и все физические явления должны иметь единую природу, то количество констант должно быть намного мень шим. Здесь уместно вспомнить правило Оккама, в соответствии с которым не следует без необходимости увеличивать количество сущностей, а также мнение Френеля о том, что “природа склонна к управлению многим с помощью малого ” [5, 8]. Поэтому, если в к ачестве критерия истинной фундаментальности рассматривать первичность и независимость констант, то фундаментальностью должны обладать совсем минимальное количество констант, а никак не десятки и конечно же не сотни. Таким образом, существует глубокое про тиворечие в том, что не единицы, а сотни констант наделены фундаментальным статусом. Предстоит выяснить, есть ли среди этих сотен констант "истинно фундаментальные " константы? Если таковые обнаружатся, то предстоит определить сколько их? Многое ук азывает на то, что на роль истинно фундаментальных констант достаточно трех размерных констант. Ведь неспроста только из трех основных единиц - метра, килограмма и секунды можно получить все производные единицы, имеющие механическую природу. Однако все т е же неудачные попытки в создании (G, h, c )-теории указывают на то, что трех констант явно недостаточно. Значит неизвестное число JF , которое соотв
3 < JF <300.
Принцип Оккама указывает на то, что правильный ответ о количестве истинно фундаментальных констант надо искать вблизи 3. Появилась работа [12], где делается вывод, что фундаментальных констант должно быть 22 (JF =22 ). Ниже будет показано, что их гораздо меньше. Предстоит выяснить, входят ли в число JF к онстанты G, h, c ? Предстоит также выяснить какие безразмерные константы можно отнести к истинно фундаментальным константам.
2. Проблема постоянной тонкой структуры (α)
Числовые значения размерных физических констант зависят от выбранной системы единиц. Как отмечалось выше, выбором системы единиц можно сделать так, что константыG, c ,h становятся равными 1. В то же время, в физике существуют важнейшие безразмерные константы такие как, постоянная тонкой структуры (α= 1 /137,03599976(50)) , отношение массы протона к массе электрона (mp /me = 1836,1526675(39)) и др. Их значения инвариантны относительно выбора системы единиц. Наука очень мало знает об этих константах [11, 13, 14]. Они остаются загадкой для физиков. Пожалуй единственным достижением является то, что их значения известны с очень большой точностью. Особенно таинств енной и загадочной является постоянная тонкой структуры (α ).
Константа (α ) была введена в физику Зоммерфельдом в 1916 году при создании теории тонкой структуры энергии ато ма. Первоначально постоянная тонкой структуры (α ) была определена как отношение скорости электрона на низшей боровской орбите к скорости света. С развитием квантовой теории стало понятно, что такое упрощенное представление не объясняет ее истинный смысл. До сих пор природа происхождения этой константы и ее физический смысл не раскрыты. Кроме тонкой структуры энергии атома эта константа проявляется в следующ ей комбинации фундаментальных физических констант: α = μ0 ce2 /2h. Интересное высказывание о числе (α ) принадлежит Фейнману [10]: "с тех пор как оно было открыто... оно было загадкой. Всех искушенных физиков-теоретиков это число ставило в тупик и тем самым вызывал о беспокойство. Непосредственно вам хотелось бы знать, откуда эта постоянная связи появилась: связана ли она с числоп π или может быть она связана с натуральными логарифмами? Никто не знает ". Относительно значения постоянной тонкой структуры авторы Берклеевского курса физики пишут [9]: "мы не располагаем теорией, которая предсказывала бы величину этой постоянной ".
В то же время, такая особенность постоянной тонкой структуры, а именно, инвариантность к выбору системы единиц, позволяет считать ее первым кандидатом на роль истинно фундаментальной константы. Физики давно у верены в том, что постоянная тонкой структуры (α ) несет в себе что-то очень важное как о микромире, так и о макромире.
3. Пять универсальных суперконстант
Как показали мои исследования фундаментальных физических констант [1, 2, 3, 4] ни одна из перечисленных выше размерных констант - ни G , ни h , ни c не является независимой. Ни одна из них - ни G , ни h , ни c не является первичной. Особенно интересным и неожиданным оказалось то, что гравитационная константа (G ) оказалась составной константой [1, 2, 3, 4]. Более того, было выявлено, что гравитационная константа (G ) включает в себя и постоянную Планка (h ), и скорость света (c ) [1, 3, 4]. Это и явяется причиной того, что тро йка констант (G, h, c ,) не может выступать в качестве константного базиса квантовой теории. Поэтому не удивительно, что попытки создания (G, h, c )-теории оказались безуспешными. Это вполне естественно, поскольку взаимозависимые и непервичные (а значит не фундаментальные) константы не могут являться константным базисом фундаментальной физической теории.
Исследования показали, что истинно фундаментальными оказалисьне константы G, h, c, а совсем другие константы [ 1, 2, 3, 4]. Их оказалось пять (JF =5) . Это следующие константы:
- Фундаментальный квант действия hu (hu =7,69558071(63) • 10-37 J s).
- Фундаментальная длина lu (lu =2,817940285(31) • 10-15 m).
- Фундаментальный квант времени tu (tu =0,939963701(11) • 10-23 s ).
- Постоянная тонкой структуры α (α =7,297352533(27) • 10-3 ).
- Число π (π=3,141592653589).
Чтобы подчеркнуть их "истинную фундаментальность " и их онтологический статус, они были названы универсальными суперконстантами [1]. Было выявлено, что физические константы выражаются посредством пя ти суперконстант hu ,lu ,tu ,α, π . В качестве примера, в таблице1 приведены эти функциональные зависимости для важнейших фундаментальных физических констант [1, 2, 3, 4]:
Табл. 1.
Наименование | Обозначение | Функциональная зависимость |
Гравитационная постоянная | G | G =f(hu ,lu ,tu ,α, π ) |
Скорость света | c | c= f(lu ,tu ) |
Постоянная Планка | H | h= f(hu ,α, π) |
Элементарный заряд | е | e=f(hu ,lu ,tu ) |
Масса электрона | m e | me =f(hu ,lu ,tu ) |
Постоянная Ридберга | R∞ | R∞ =f(lu ,α,π ) |
Отношение масс протон-электрон | m p /m e | m p /me =f(α, π ) |
Постоянная Хаббла | H0 | H0 =f(tu ,α, π ) |
Планковская масса | mpl | mpl =f(hu ,lu ,tu ,α, π ) |
Планковская длина | lpl | lpl =f(lu ,α, π ) |
Планковское время | tpl | tpl =f(tu ,α, π ) |
Квант магнитного потока | Фo | Фo =f(hu ,lu ,tu ,α, π ) |
Магнетон Бора | μB | μB = f(hu ,lu ,tu ,α ,) |
Исследования показали, что в основе практически всех важнейших физических констант лежат приведенные выше пять универсальных суперконстант. Таким образом, известное на сегодня семейство физических констант до пускает редукцию к первичному суперконстантному базису, поскольку оно - это семейство, происходит от этого первичного (hu ,lu ,tu ,α , π)- базиса:
Поскольку магнитная и электрическая константы не имеют физического смысла и их введение обусловлено только выбором системы единиц, то физические и астрофизические константы допускают редукцию к пяти первичным су перконстантам. Первичный, онтологический статус универсальных суперконстант, позволяет выделить суперконстанты в отдельный класс фундаментальных физических констант. Я считаю, что в перечень фундаментальных физических констант целесообразно ввести новый раздел: "Универсальные суперконстанты":
Universalsuperconstants | ||||
Quantity | Symbol | Value | Unit | |
1 | Fundamentalquantum | hu | 7,69558071(63) • 10-37 | J s |
2 | Fundamentallength | lu | 2,817940285(31) • 10-15 | m |
3 | Fundamentaltime | tu | 0,939963701(11) • 10-23 | s |
4 | Fine-structure constant | α | 7,297352533(27) • 10-3 | |
5 | Pi | π | 3,141592653589... |
Выделение специального раздела "Универсальные суперконстанты" можно обосновать следующими соображениями. Пять суперконстант, входящих в суперконстантный базис, являются первичными константами. Все другие фундаментальные физические константы
являются составными константами, имеют вторичный статус и могут быть получены на базе этих первичных суперконстант hu , lu , tu , α, π< FONT >. С помощью пяти суперконстант можно получить аналитическим расчетом практически все важнейшие фундаментальные физические константы. Автором получены соответствующие математические соотношени я для вычисления значений фундаментальных физических констант с помощью суперконстант [1, 2, 3, 4]. По моему мнению, эти пять универсальных суперконстант смогут заменить собой большой перечень электромагнитных констант, универсальных констант, атомных и ядерных констант и стать основой новых физических теорий поля, элементарных частиц и гравитации. Более подробные сведения о суперконстантах можно узнать на сайтах:
http://www.sciteclibrary.com/
< A>
www.jsup.or.jp/shiryo/PDF/0900z53.pdf
http://www.rusnauka.narod.ru/
http://www.n-t.org/tp/ng/nfk.htm
4. Онтологический статус суперконстант hu , lu , tu , α, π
--> ЧИТАТЬ ПОЛНОСТЬЮ <--