Доклад: Генные болезни

Это группа болезней, в основе развития которых лежат нарушения числа или структуры хромосом, возникающие в гаметах родителей или на ранних стадиях дробления зиготы. История изучения Х.б. берет начало с кинических исследований, проводившихся задолго до описания хромосом человека и открытия хромосомных аномалий. Х.б. - болезнь Дауна (трисомия 21) , синдромы: Тернера (трисомия 18), Клайнфелтера, Патау (трисомия 13), Эдвардса.

С разработкой метода авторадиографии стала возможной идентификация некоторых индивидуальных хромосом, что способствовало открытию группы Х.б., связанных со структурными перестройками хромосом. Интенсивное развитие учения о Х.б. началось в 70х годах 20 в. после разработки методов дифференциального окрашивания хромосом.

Классификация Х.б. основана на типах мутаций вовлеченных в них хромосом. Мутации в половых клетках приводят к развитию полных форм Х.б., при которых все клетки организма имеют одну и ту же хромосомную аномалию.

В наст. Время описано 2 варианта нарушений числа хромосомных наборов - тетраплоидия и триплодия. Другая группа синдромов обусловлена нарушениями числа отдельных хромосом – трисомиями (когда имеется добавочная хромосома в диплоидном наборе) или моносомия (одна из хромосом отсутствует).Моносомии аутосом несовместимы с жизнью . Трисомии - более часто встречающаяся паталогия у человека . Ряд хромосомных болезней связан с нарушением числа половых хромосом.

Самая многочисленная группа Х.б.- это синдромы, обусловленные структурными перестройками хромосом. Выделяют хромосомные синдромы так называемых частичных моносомий (увеличение или уменьшение числа отдельных хромосом не на целую хромосому, а на ее часть).

В связи с тем, что подавляющая часть хромосомных аномалий относится к категории летальных мутаций, для характеристики их количественных параметров используются 2 показателя - частота распространениея и частота возникновения.

Выяснено, что около 170 из 1000 эмбрионов и плодов погибают до рождения, из них около 40% - вследствие влияния хромосомных нарушений. Тем не менее, значительная часть мутантов (носителей хромосомной аномалии) минует действие внутриутробного отбора .

Но некоторые из них погибают в раннем детстве. Больные с аномалиями половых хромосом из - за нарушений полового развития , как правило, не оставляют потомства. Отсюда следует - все аномалии можно отнести к мутациям. Показано ,что в общем случае хромосомные мутации почти полностью изчезают из популяции через 15 - 17 поколений .

Для всех форм Х.б. общим признаком является множественность нарушений (врожденные пороки развития). Общими проявлениями Х.б. являются: задержка физического и психомоторного развития, умственная отсталость, костно-мышечные аномалии, пороки сердечно - сосудистой, мочеполовой, нервной и др. систем, отклонение в гормональном, биохимическом и иммунологическом статусе и др.

Степень поражения органов при Х.б. зависит от многих факторов - типа хромосомной аномалии, недостающего или избыточного материала индивидуальной хромосомы, генотипа организма, условий среды, в котором развивается организм.

Этиологическое лечение Х.б. в настоящее время не разработано.

Разработка методов пренатальной диагностики делает этот подход эффективным в борьбе не только с хромосомными, но и с др. наследственными болезнями.

К настоящему времени на хромосомах человека картировано около 800 генов, мутации которых приводят к различным наследственным заболеваниям. Количество моногенных заболеваний, для которых известна локализация контролирующего гена, еще больше и приближается к 950 за счет существования аллельных серий, то есть групп болезней, клинически сильно отличающихся друг от друга, но обусловленных мутациями в одном и том же гене . Для всех этих заболеваний принципиально возможна пренатальная диагностика с использованием косвенных методов молекулярного анализа .

Более половины картированных генов клонировано и охарактеризовано методами молекулярного анализа. Для каждого из этих генов описаны мутантные варианты среди соответствующих групп больных, причем количество идентифицированных аллелей в разных генах может колебаться от одного до нескольких сотен (см.ниже). Молекулярное генотипирование мутации позволяет проводить прямую пренатальную диагностику соответствующего наследственного заболевания в семьях высокого риска.

Другое положение, которое следует напомнить в вводной части этой главы касается специфичности мутационных повреждений каждого структурного гена. Несмотря на наличие общих закономерностей в мутационных процессах, спектр мутаций для каждого гена, равно как и сами структурные гены —уникальны. Причины этой уникальности кроются в особенностях первичной структуры ДНК каждого гена, в частности, обогащенности CG нуклеотидами, его размерах, наличии прямых и обращенных повторов, присутствии внутри гена ДНК последовательностей, гомологичных внегенным участкам, что может приводть к нарушениям процессов рекомбинации в мейозе и.т.д. Для каждого идентифицированного гена, мутации которого приводят к наследственным заболеваниям, разработаны эффективные методы молекулярной диагностики, как правило, направленные на генотипирование наиболее частых мутаций этого гена. Реже для этих же целей используется непрямой метод диагностики с помощью молекулярных маркеров.

Примеры болезней

Адрено-генитальный синдром.

Адрено-генитальный синдром —(врожденный дефицит 21‑гидроксилазы) —достаточно распространенное аутосомно-рецессивное заболевание. Частота “классических”форм 1:10 000 новоржденных, “неклассической”—около 1% в популяции. В зависимости от характера нарушения функции гена и, соответственно клинических проявлений “классическая форма”подразделляется на два варианта: 1. летальная сольтеряющая форма; 2. нелетальная —вирилизирующая форма, связанная c избытком андрогенов (Morel, Miller, 1991).

В локусе 6р21.3, внутри сложного супергенетического комплекса HLA идентифицированы два тандемно расположенных 21‑гидроксилазных гена —функционально активный CYP21B и псвдоген —CYP21А, неактивный вследствие делеции в 3‑м экзоне, инсерции со сдвигом рамки считывания в 7‑м экзоне и нонсенс мутаций —в 8‑м экзоне. Ген и псевдоген разделены смысловой последовательностью гена С4В, кодирующей 4‑й фактор комплемента. Оба гена состоят из 10 экзонов, имеют длину 3,4 кб и отличаются только по 87 нуклеотидам. Высокая степень гомологии и тандемное расположение указвают на общность эволюционного происхождения этих генов. Любопытно отметить, что такие же тандемно расположенные гены 21‑гидроксилазы (называемые также Р450с21) обнаружены и у других млекопитающих, причем у мышей, в отличие от человека, активен только ген CYP21A, но не CYP21B, тогда как у крупного рогатого скота функционально активны оба гена.

Белок- 21‑гидроксилаза ( Р450с21- микросомальный цитохром 450) обеспечивает превращение 17‑гидроксипрогестерона в 11‑дезоксикортизол и прогестерона —в дезоксикортикостерон. В первом случае возникает дефицит глюкокортикоидов и, прежде всего, кортизола, что в свою очередь стимулирует синтез АКТГ, и ведет к гиперплазии коры надпочечников (вирилирующая форма). Нарушение превращения прогестерона в дезоксипрогестерон ведет к дефициту альдостерона, что в свою очередь нарушает способность почек удерживать ионы натрия и приводит к быстрой потере соли плазмой крови (соль теряющая форма).

Как и в случае гемофилии А, наличие рядом с кодирующим геном гомологичной ДНК последовательности зачастую ведет к нарушениям спаривания в мейозе и, как следствие этого, к конверсии генов (перемещения фрагмента активного гена на псевдоген), либо к делеции части смыслового гена. В обоих случаях функция активного гена нарушается. На долю делеций приходится около 40% мутаций, на долю конверсий —20% и примерно 25% составляют точечные мутации. Согласно отечественным данным в случае наиболее тяжелой сольтеряющей формы АГС, на долю конверсий приходится более 20% мутантных хромосом, на долю делеций —около 10% (Evgrafov et al., 1995).

Непрямая диагностика АГС возможна с помощью типирования тесно сцепленных с геном CYP21B аллелей HLA A и HLA B генов, а также алелей гена HLA DQA1. Прямая ДНК диагностика АГС основана на амплификакции с помощью ПЦР отдельных фрагментов генов CYP21B и CYP21A, их рестрикции эндонуклеазами HaeIII или RsaI и анализе полученных фрагментов после электрофореза (Evgrafov et al., 1995).

Спинальная мышечная атрофия.

Спинальная мышечная атрофия (СМА) — аутосомно-рецессивное заболевание, характеризуется поражением моторных нейронов передних рогов спинного мозга, в результате чего развиваются симметричные параличи конечностей и мышц туловища. Это —второе после муковисцидоза наиболее частое летальное моногенное заболевание (частота 1: 6 000 новорожденных).

СМА подразделяется на три клинические формы. Тип I. Острая форма (болезнь Верднига-Гоффмана), проявляется в первые 6 месяцев жизни и приводит к смерти уже в первые два года; Тип II. Средняя (промежуточная) форма, пациенты не могут стоять, но обычно живут более 4‑х лет; Тип III. Ювенильная форма (болезнь Кугельберга-Веландера) —прогрессирующая мышечная слабость после 2‑х лет. Все три формы представляют собой аллельные варианты мутаций одного гена SMN (survival motor neurons), картированного в локусе D5S125 (5q13) и идентифицированного методом позиционного клонирования (см.Главу III) в 1995г (Lefebvre et al. 1995). В этой пока единственой работе показано, что ген SMN размером всего 20 000 п.о.состоит из 8 экзонов. мРНК этого гена содержит 1 700 п.о. и кодирует ранее неизвестный белок из 294 аминокислотных остатков с молекулярным весом 32 КилоДальтона.

Ген дуплицирован. Его копия (возможно вариант псевдогена) располагается несколько ближе к центромере и отличается от гена SMN наличием 5‑и точечных мутаций, позволяющих отличить оба гена путем амплификации экзонов 7 и 8 и их исследованием методом SSCP анализа (см.Главу IV). Ген назван сBCD541, по аналогии с первоначальным вариантом названия для теломерной копии, тоестьгена SMN, tBCD541. Ген cBCD541 экспрессируется, но в отличие от гена SMN его сДНК подвергается альтернативному сплайсингу с утратой экзона 7. Отсутствие гена SMN (tBCD541) у 93% больных (213 из 229), его разорванная (interrupted) структура у 13 обследованных пациентов (5.6%) и наличие серьезных мутаций у оставшихся 3‑х больных дали основание именно данную теломерную копию гена считать ответственной за заболевание. Существенно отметить, что центромерная копия гена обнаружена у 95. 5% больных, тогда какотсутствует она только у 4,4% пациентов.

В непосредственной близости от теломерного конца гена SMN идентифицирован еще один ген —ген белка-ингибитора запрогаммированной гибели нейронов (neuronal apoptosis inhibitory protein -NAIP). При тяжелых клинических формах СМА (Тип I), обусловленных делециями, по-видимому, нередко происходит утрата гена NAIP.

Согласно гипотезе авторов СМА возникает при гомозиготном состоянии мутаций (обычно-делеций) в гене SMN, при этомразличия междуформамиСМА определяются двумя основными факторами: 1. числом копий гена cBCD541 (две —в случае Типа I и четыре (возникающих вследствие конверсии между SMN и cBCD541) — в случае Типа III), 2. наличием или отсутствием генаNAIP.Среди всех обследованных СМА-больных не обнаруженыслучаи одновременнойделеции обоих гомологичных генов - SMN (tBCD541) и сBCD541,чтоуказывает, по мнению авторов,на то, что такая аберрация должна проявляться как доминантная леталь еще в эмбриогенезе.

Некоторые положения этой, безусловно, основополагающей работы французских авторов, по-видимому, еще требуют уточнения, однако, уже сейчас она сделала возможной прямую молекулярную диагностику СМА у 98,6% больных. С этой целью проводится амплификация экзона 7, который отсутствует у подавляющего большинства больных. Нормальный экзон 7 (ген SMN) дифференцируют от мутантного варианта (ген cBCD541) c помощью SSCP анализа. При необходимости возможна косвенная диагностика —ПЦР анализ динуклеотидных (CA) повторов ДНК локусов D5S125; D5S112; D5S127; ПДРФ-анализ с фланкирующими ДНК-зондами MU, 105—RA; 153— GT.

СПИСОК ЛИТЕРАТУРЫ

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 378
Бесплатно скачать Доклад: Генные болезни