Доклад: Gottfried Wilhelm von Leibniz
... as librarian were onerous, but fairly mundane: general administration, purchase of new books and second-hand libraries, and conventional cataloguing.
He undertook a whole collection of other projects however. For example one major project begun in 1678-79 involved draining water from the mines in the Harz mountains. His idea was to use wind power and water power to operate pumps. He designed many different types of windmills, pumps, gears but:-
... every one of these projects ended in failure. Leibniz himself believed that this was because of deliberate obstruction by administrators and technicians, and the worker's fear that technological progress would cost them their jobs.
In 1680 Duke Johann Friedrich died and his brother Ernst August became the new Duke. The Harz project had always been difficult and it failed by 1684. However Leibniz had achieved important scientific results becoming one of the first people to study geology through the observations he compiled for the Harz project. During this work he formed the hypothesis that the Earth was at first molten.
Another of Leibniz's great achievements in mathematics was his development of the binary system of arithmetic. He perfected his system by 1679 but he did not publish anything until 1701 when he sent the paper Essay d'une nouvelle science des nombres to the Paris Academy to mark his election to the Academy. Another major mathematical work by Leibniz was his work on determinants which arose from his developing methods to solve systems of linear equations. Although he never published this work in his lifetime, he developed many different approaches to the topic with many different notations being tried out to find the one which was most useful. An unpublished paper dated 22 January 1684 contains very satisfactory notation and results.
Leibniz continued to perfect his metaphysical system in the 1680s attempting to reduce reasoning to an algebra of thought. Leibniz published Meditationes de Cognitione, Veritate et Ideis (Reflections on Knowledge, Truth, and Ideas) which clarified his theory of knowledge. In February 1686, Leibniz wrote his Discours de métaphysique (Discourse on Metaphysics).
Another major project which Leibniz undertook, this time for Duke Ernst August, was writing the history of the Guelf family, of which the House of Brunswick was a part. He made a lengthy trip to search archives for material on which to base this history, visiting Bavaria, Austria and Italy between November 1687 and June 1690. As always Leibniz took the opportunity to meet with scholars of many different subjects on these journeys. In Florence, for example, he discussed mathematics with Viviani who had been Galileo's last pupil. Although Leibniz published nine large volumes of archival material on the history of the Guelf family, he never wrote the work that was commissioned.
In 1684 Leibniz published details of his differential calculus in Nova Methodus pro Maximis et Minimis, itemque Tangentibus... in Acta Eruditorum, a journal established in Leipzig two years earlier. The paper contained the familiar d notation, the rules for computing the derivatives of powers, products and quotients. However it contained no proofs and Jacob Bernoulli called it an enigma rather than an explanation.
In 1686 Leibniz published, in Acta Eruditorum, a paper dealing with the integral calculus with the first appearance in print of the notation.
Newton's Principia appeared the following year. Newton's 'method of fluxions' was written in 1671 but Newton failed to get it published and it did not appear in print until John Colson produced an English translation in 1736. This time delay in the publication of Newton's work resulted in a dispute with Leibniz.
Another important piece of mathematical work undertaken by Leibniz was his work on dynamics. He criticised Descartes' ideas of mechanics and examined what are effectively kinetic energy, potential energy and momentum. This work was begun in 1676 but he returned to it at various times, in particular while he was in Rome in 1689. It is clear that while he was in Rome, in addition to working in the Vatican library, Leibniz worked with members of the Accademia. He was elected a member of the Accademia at this time. Also while in Rome he read Newton's Principia. His two part treatise Dynamica studied abstract dynamics and concrete dynamics and is written in a somewhat similar style to Newton's Principia. Ross writes in :-
... although Leibniz was ahead of his time in aiming at a genuine dynamics, it was this very ambition that prevented him from matching the achievement of his rival Newton. ... It was only by simplifying the issues... that Newton succeeded in reducing them to manageable proportions.
Leibniz put much energy into promoting scientific societies. He was involved in moves to set up academies in Berlin, Dresden, Vienna, and St Petersburg. He began a campaign for an academy in Berlin in 1695, he visited Berlin in 1698 as part of his efforts and on another visit in 1700 he finally persuaded Friedrich to found the Brandenburg Society of Sciences on 11 July. Leibniz was appointed its first president, this being an appointment for life. However, the Academy was not particularly successful and only one volume of the proceedings were ever published. It did lead to the creation of the Berlin Academy some years later.
Other attempts by Leibniz to found academies were less successful. He was appointed as Director of a proposed Vienna Academy in 1712 but Leibniz died before the Academy was created. Similarly he did much of the work to prompt the setting up of the St Petersburg Academy, but again it did not come into existence until after his death.
It is no exaggeration to say that Leibniz corresponded with most of the scholars in Europe. He had over 600 correspondents. Among the mathematicians with whom he corresponded was Grandi. The correspondence started in 1703, and later concerned the results obtained by putting x = 1 into 1/(1+x) = 1 - x + x2 - x3 + .... Leibniz also corresponded with Varignon on this paradox. Leibniz discussed logarithms of negative numbers with Johann Bernoulli, see [156].
In 1710 Leibniz published Théodicée a philosophical work intended to tackle the problem of evil in a world created by a good God. Leibniz claims that the universe had to be imperfect, otherwise it would not be distinct from God. He then claims that the universe is the best possible without being perfect. Leibniz is aware that this argument looks unlikely - surely a universe in which nobody is killed by floods is better than the present one, but still not perfect. His argument here is that the elimination of natural disasters, for example, would involve such changes to the laws of science that the world would be worse. In 1714 Leibniz wrote Monadologia which synthesised the philosophy of his earlier work, the Théodicée.
Much of the mathematical activity of Leibniz's last years involved the priority dispute over the invention of the calculus. In 1711 he read the paper by Keill in the Transactions of the Royal Society of London which accused Leibniz of plagiarism. Leibniz demanded a retraction saying that he had never heard of the calculus of fluxions until he had read the works of Wallis. Keill replied to Leibniz saying that the two letters from Newton, sent through Oldenburg, had given:-
... pretty plain indications... whence Leibniz derived the principles of that calculus or at least could have derived them.
Leibniz wrote again to the Royal Society asking them to correct the wrong done to him by Keill's claims. In response to this letter the Royal Society set up a committee to pronounce on the priority dispute. It was totally biased, not asking Leibniz to give his version of the events. The report of the committee, finding in favour of Newton, was written by Newton himself and published as Commercium epistolicum near the beginning of 1713 but not seen by Leibniz until the autumn of 1714. He learnt of its contents in 1713 in a letter from Johann Bernoulli, reporting on the copy of the work brought from Paris by his nephew Nicolaus(I) Bernoulli. Leibniz published an anonymous pamphlet Charta volans setting out his side in which a mistake by Newton in his understanding of second and higher derivatives, spotted by Johann Bernoulli, is used as evidence of Leibniz's case.
The argument continued with Keill who published a reply to Charta volans. Leibniz refused to carry on the argument with Keill, saying that he could not reply to an idiot. However, when Newton wrote to him directly, Leibniz did reply and gave a detailed description of his discovery of the differential calculus. From 1715 up until his death Leibniz corresponded with Samuel Clarke, a supporter of Newton, on time, space, freewill, gravitational attraction across a void and other topics, see, , and .
In Leibniz is described as follows:-
Leibniz was a man of medium height with a stoop, broad-shouldered but bandy-legged, as capable of thinking for several days sitting in the same chair as of travelling the roads of Europe summer and winter. He was an indefatigable worker, a universal letter writer (he had more than 600 correspondents), a patriot and cosmopolitan, a great scientist, and one of the most powerful spirits of Western civilisation.
Ross, in , points out that Leibniz's legacy may have not been quite what he had hoped for:-
It is ironical that one so devoted to the cause of mutual understanding should have succeeded only in adding to intellectual chauvinism and dogmatism. There is a similar irony in the fact that he was one of the last great polymaths - not in the frivolous sense of having a wide general knowledge, but in the deeper sense of one who is a citizen of the whole world of intellectual inquiry. He deliberately ignored boundaries between disciplines, and lack of qualifications never deterred him from contributing fresh insights to established specialisms. Indeed, one of the reasons why he was so hostile to universities as institutions was because their faculty structure prevented the cross-fertilisation of ideas which he saw as essential to the advance of knowledge and of wisdom. The irony is that he was himself instrumental in bringing about an era of far greater intellectual and scientific specialism, as technical advances pushed more and more disciplines out of the reach of the intelligent layman and amateur.
J J O'Connor and E F Robertson