Доклад: Индукция
Обратимся к методу индукции. Этот метод находит систематическое применение в V-VI классах. Большинство обоснований в этих классах проводится индуктивным методом. В старших классах роль индукции снижается. Она применяется лишь в целях обнаружения математических закономерностей, обоснование же их проводится дедуктивным методом.
Переход от частного к общему, от единичных фактов, установленных с помощью наблюдения и опыта, к обобщениям является закономерностью познания. Неотъемлемой логической формой такого перехода является индукция, представляющая собой метод рассуждений от частного к общему, вывод заключения из частных посылок (от лат. inductio - наведение).
Использование этого метода рассуждений для получения новых знаний в процесс" обучения называют индуктивным методом обучения.
Для описания индуктивного метода обучения необходимо прежде всего выяснить, какие имеются виды индукции.
Пусть А={а1,а2,….}-множество всевозможных частных случаев, в каждом из которых некоторое свойство С может быть или не быть (иметь или не иметь место). Известно, допустим, что в k случаях имеет место свойство С, т. е. имеются посылки
С{а1), С(а2),...,С(аk).
Индуктивное рассуждение строится по схеме
(1),
(в схеме (1) над чертой перечислены посылки, под чертой записано заключение).
В случае, когда А - конечное множество, содержащее k элементов (всевозможных частных случаев -k), т. е наши посылки исчерпывают всевозможные
частные случаи, схема (1) представляет собой правило вывода, основанное на формуле
и заключение достоверно (истинно, если истинны посылки).
В этом случае рассуждение, построенное по схеме (1), называется полной индукцией.
Если же множество А всевозможных частных случаев содержит более k элементов или же бесконечно (что особенно часто встречается в математике), т. е. когда наши посылки не исчерпывают всевозможные частные случаи, то заключение по схеме (1) не является достоверно истинным высказыванием, а лишь вероятно истинно (правдоподобно) при истинности посылок.
В этом случае рассуждение, построенное по схеме (1), называется неполной индукцией.
Математическая индукция В математике широко используется еще один вид индукции - полная математическая (или математическая) индукция. Математическая индукция - специальный метод доказательства предложений типа (или, т. е. предложений, выражающих некоторое свойство Р, присущее всем натуральным числам n (или всем n > k, где k, - определенное натуральное число). Этот метод хотя и называется индуктивным, по своей структуре представляет собой дедуктивное рассуждение, опирающееся на аксиому математической индукции:
(если 1 обладает некоторым свойством Р и если для всякого натурального числа х имеем: если оно обладает этим свойством, то им обладает и непосредственно следующее за ним число х + 1,-то всякое натуральное число n обладает свойством Р). Ввиду того что непосредственная проверка наличия свойства Р у любого натурального числа невозможна из-за бесконечности множества N, поступают так: проверкой устанавливают наличие этого свойства у числа 1 и доказывают, что из допущения о наличии этого свойства у произвольного числа х следует его наличие и у непосредственно следующего за ним числа х +1, (т.е. устанавливается, что свойство P как бы "передается по наследству" от х к х +1). После этого заключают об истинности доказываемого предложения, т. е. о том, что свойством Р обладают все натуральные числа. Иногда это заключение обосновывается следующим образом: так как доказываемое предложение верно для 1 и из того, что оно верно для произвольного х, следует, что оно верно и для х + 1, то оно верно и для числа 2; так как оно верно для 2, то на том же основании оно верно и для 2+1, т.е. для 3; и т.д. Следовательно, оно верно для любого натурального числа. Слова "и т. д." свидетельствуют о незавершенности, а по существу о незавершимости этого рассуждения, состоящего из бесконечного числа шагов. Роль аксиомы математической индукции состоит именно в том, что она позволяет заменить бесконечное индуктивное рассуждение конечным дедуктивным. Заметим, что метод математической индукции неоднократно включался в школьную программу и неоднократно исключался из нее как предмет специального изучения. В любом случае он может разъясняться в связи с решением задач. Полная индукция находит ограниченное применение в процессе обучения. Примером полной индукции может служить рассуждение, которым следовало бы завершить доказательство теоремы об измерении вписанного угла, если она доказывается отдельно для случая, когда центр окружности лежит на стороне угла, внутри или вне его. Если а1 - случай "центр лежит на стороне угла", а2 - "центр лежит внутри угла" и а - "центр лежит вне угла", то {а1, а2, а3}- множество всевозможных частных случаев и, если С {а) (означает "теорема доказана в случае а"), то с помощью рассуждения по схеме полной индукции,- заключаем, что теорема доказана для всех возможных случаев, или что "теорема доказана". Это рассуждение обычно опускается в учебниках. Целесообразно его явно высказать, чтобы научить этому методу учащихся. Обычно, когда говорят "индуктивные методы обучения", имеют в виду применение неполной индукции в обучении. Дальше, говоря "индукция", будем иметь в виду неполную индукцию. Ввиду недостоверности заключения индукция не может служить методом доказательства. Но она является мощным эвристическим методом, т. е. методом открытия новых истин. В таком качестве индукция должна широко применяться в школьном обучении в рамках методов, ориентированных на обучение учащихся деятельности по приобретению новых знаний. --> ЧИТАТЬ ПОЛНОСТЬЮ <-- К-во Просмотров: 421
Бесплатно скачать Доклад: Индукция
|