Доклад: Хром и кислород
Хром ( Chromium ). Хром содержится в земной коре в количестве 0,02%. В природе он встречается главным образом в виде хромистого железняка FeO∙Cr2 O3 , богатые месторождения которого имеются в Казахстане и Урале.
При восстановления хромистого железняка углём появляется сплав хрома с железом–феррохром , который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Для получения чистого хрома сначала получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом.
Хром представляет собой твёрдый блестящий металл, плавящийся при 1890˚С; плотность его 7,19 г/см3 . При комнатной температуре хром стоек к воде и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.
Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали, обладают повышенной твёрдостью. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей.
Хром образует три оксида: оксид хрома ( II) , или закись хрома , CrO, имеющий основной характер, оксид хрома ( III) , или окись хрома , Cr2 O3 , проявляющий амфотерные свойства, и окись хрома( VI) , или хромовый ангидрид , CrO3 – кислотный оксид. Соответственно этим трём оксидам известны и три ряда соединений хрома.
Соединения хрома ( II). При растворении хрома в соляной кислоте получается раствор голубого цвета, содержащий хлорид хрома ( II) CrCl2 . Если к этому раствору прилить щелочи, то выпадает желтый осадок – гидроксид хрома ( II) Cr(OH)2 . Соединения хрома (II)неустойчивы и быстро окисляются кислородом воздуха в соединения хрома (III).
Соединения хрома ( III). Оксид хрома ( III) , Cr2 O3 представляет собой тугоплавкое вещество зелёного цвета, применя6емое под названием зелёного крона для приготовления клеевой и масляной красок. При сплавлении с силикатами оксид хрома (III) окрашивает их в зелёный цвет и поэтому служит для окраски стекла и фарфора. Cr2 O3 входит также в состав полирующих средств.
Гидроксид хрома ( III) Cr(OH)3 выпадает в виде синевато-серого осадка при действии щелочей на соли хрома (III):
Cr3+ +3OH- →Cr(OH)3 ↓
Подобно гидроксидам алюминия и цинка, он имеет амфотерный характер и растворяется в кислотах с образованием солей хрома (III), а в щелочах – изумрудно-зелёных растворов хримотов , например:
Cr(OH)3 + 3NaOH→Na3 [Cr(OH)6 ]
или
Cr(OH)3 +3OH- →[Cr(OH)6 ]3-
Хромиты, полученные сплавлением Cr2 O3 с оксидами других металлов и известные главным образом для двухвалентных металлов, имеют состав, отвечающий формуле М(CrO2 )2 , и представляют собой соли метахромистой кислоты HcrO2 . к ним относится и природный хромистый железняк Fe(CrO2 )2 .
Из солей хрома (III) самой распространённой является двойная соль хрома и калия – хромокалиевые квасцы KCr(SO4 )2 ∙12H2 O, образующие сине-фиолетовые кристаллы.
Соли хрома (III) во многом похожи на соли алюминия. В водных растворах они сильно гидролизованы и легко превращаются в основные соли. Со слабыми кислотами хром (III), подобно алюминию, солей не образует.
Соединения хрома ( VI). Важнейшими соединениями хрома (VI) являются триоксид хрома , или хромовый ангидрид , CrO3 и соли отвечающих ему кислот – хромовой H2 CrO4 и двухромовой H2 CrO7 . Обе кислоты существуют только в водном растворе и при попытках выделить их из раствора, распадаются на хромовый ангидрид и воду; но соли их достаточно стойки. Соли хромовой кислоты называются хроматами , а двухромовой – бихроматами или дихроматами .
Почти все хроматы имеют желтую окраску. Некоторые из них применяются в качестве красок. Например, нерастворимый в воде хромат свинца PbCrO4 , под названием желтый крон , служит для приготовления желтой масляной краски.
При подкислении раствора какого-нибудь хромата, например, хромата калия K2 CrO4 , чисто-желтая окраска раствора сменяется на оранжевую вследствие перехода ионов CrO2- 4 в ионы Cr2 O2- 7 . Из полученного раствора может быть выделена соль двухромовой кислоты – двухромат калия K2 Cr2 O7 – в виде оранжево-красных кристаллов. Реакция превращения хромата в дихромат выражается уравнением:
2CrO2- 4 +2H+ ↔Cr2 O2- 7 +H2 O
Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н+ и CrO2- 4 ; поэтому раствор дихромата имеет, кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы CrO2- 4 , т. е. хромат, а при избытке ионов водорода – ионы Cr2 O2- 7 , т. е. дихромат.
Хроматы щелочных металлов получаются путём окисления соединения хрома (III) в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия по уравнению:
2K3 [Cr(OH)6 ]+3Br2 +4KOH→2K2 CrO4 +6KBr+8H2 O
О происходящем окислении можно судить по тому, что изумрудно-зелёная окраска раствора хромита переходит в ярко-желтую.
Хроматы могут быть получены также сплавлением Cr2 O3 со щелочью в присутствии какого-нибудь окислителя, например хлората калия:
Cr2 O3 +4KOH+KClO3 →2K2 CrO4 +KCl+2H2 O
Хроматы и дихроматы – сильные окислительные. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, а соли хромата (III) – в зелёный или зеленовато-фиолетовый).
Мы видели, что в кислых и в щелочных растворах соединения хрома (III) и хрома (VI) существует в разных формах: в кислой среде в виде ионов Cr3+ или Cr2 O2- 7 , а в щелочной – в виде ионов [Cr(OH)6 ]3- или CrO2- 4 . Поэтому взаимопревращение соединений хрома (III) и хрома (VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие
Cr2 O2- 7 +14H+ +6eˉ↔2Cr3+ +7H2 O
а в щелочной
[Cr(OH)6 ]3- +2OH- ↔CrO2- 4 +4H2 O+3eˉ
Однако и в кислой, и в щелочной среде окисления хрома (III)приводит к уменьшению pH раствора; обратный же процесс – восстановление хрома (VI) – сопровождается увеличением pH. Поэтому, в соответствии с принципом Ле Шарля, при повышении кислотной среды равновесие смещается в направлении восстановления хрома (VI), а при уменьшении кислотности – в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома (III) – в щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах.
Приведём несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.
1. При пропускании сероводорода через подкисленный серной кислотой раствор дихромата оранжевая окраска раствора переходит в зелёную и одновременно жидкость становится мутной вследствие выделения серы:
K2 Cr2 O7 +3H2 S+4H2 SO4 →Cr2 (SO4 )3 +3S↓+K2 SO4 +7H2 O
2. При действии концентрированной соляной кислоты на дихромат калия выделяется хлор и получается зелёный раствор, содержащий хлорид хрома (III):
K2 Cr2 O7 +14HCl→2CrCl3 +3Cl2 ↑+2KCl+7H2 O
3. Если пропускать диоксид серы через концентрированный раствор дихромата калия, содержащий достаточное количество серной кислоты, то образуются эквимолекулярные количества сульфатов калия и хрома (III):
K2 Cr2 O7 +3SO2 +H2 SO4 →Cr2 (SO4 )3 +K2 SO4 +H2 O
При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(SO4 )2 ∙12H2 O. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--