Доклад: Оптимизация в планировании перевозок
Оптимизация распределения подвижного состава по маршрутам перевозок грузов
В АТП далеко не всегда имеются в наличии транспортные средства, которые согласно изложенной методике выбора подвижного состава следует применять для перевозок грузов. Поэтому приходится решать задачу оптимального распределения по маршрутам имеющегося подвижного состава. Необходимость в решении задачи может возникать ежесуточно в связи с изменением условий эксплуатации или в зависимости от той цели, которую необходимо достичь.
Задача формулируется следующим образом. Имеется m типов подвижного состава в количествах a1, a2,...,am и n объектов, на которые требуется перевести Q1, Q2,..., Qn тонн грузов, причем любой тип имеющегося подвижного состава можно использовать для перевозки указанных грузов. Обозначим выработку i-го типа подвижного состава на j-м объекте через Wij, число подвижного состава этого типа, работающего на данном объекте (маршруте), через xij, стоимость перевозок 1 т груза через Сij и получаемую прибыль через Пij. Требуется составить план перевозок грузов xij при условии, что общая потребность в транспортных средствах для всех объектов равна их наличию или меньше его:
n
å xij ≤ ai, i=1...m
j=1
и на каждый объект должно быть заведено потребное количество груза
m
å xij Wij=Qij, j=1...n.
i=1
Переменные xij должны удовлетворять одному из критериев оптимизации:
суммарным затратам на перевозки
m n
З=åå Wij xij Сij ® min
i=1 j=1
суммарной прибыли
m n
П=åå Wij xij Пij ® max
i=1 j=1
суммарному объему перевозок
m n
Q = ååWijxij®max.
i=1 j=1
Решение задачи по одному из указанных критериев зависит от конкретных условий эксплуатации. Если общая провозная способность автомобилей недостаточна, то решение ведется по критерию, обеспечивающему выполнение перевозок подвижным составом с минимальными провозными возможностями. В остальных случаях целесообразно минимизировать затраты на перевозки, используя для этого критерий по суммарным затратам на перевозки.
Рассмотрим пример решения одной из частных задач оптимизации распределения подвижного состава по маршрутам перевозки грузов, причем ограничимся случаем, где имеются всегда по два маршрута, вида груза и типа автомобилей.
Таблица 1 Исходная информация
Вид ресурса (автомобили) | Объем груза, перевезенного за смену одним автомобилем, т | Запас ресурсов (кол. автомобилей) | |||
Груз 1-го вида | Груз 2-го вида | ||||
Маршрут 1 | Маршрут 2 | Маршрут 3 | Маршрут 4 | ||
q=3 | 14 | 7 | 15 | 9 | 10 |
q=5 | 15 | 5 | 17 | 9 | 15 |
Плановый объем перевозок, т | 150 | 100 | 200 | 250 | __ |
Исходя из данных, составим систему неравенств, которая в математическом виде воспроизводит решаемую задачу:
х11+х21+х31+х41 ≤ 10
х12+х22+х23+х42 ≤ 15