Доклад: Цилиндр и конус
конуса и всех отрезков, соединяющих вершину конуса с точ-
ками основания. Отрезки, соединяющие вершину к. с точками
окружности основания, называются образующими конуса. К.
называется прямым, если прямая соеденяющая вершину к. с
центром основания, перпендикулярна плоскости основания.
Высотой к. называется перпендикуляр, опущенный из его
вершины на плоскость основания. Осью прямого конуса назы-
вается прямая, содержащая его высоту. Сечение к. плос-
костью, проходящей через его ось, называется осевым сече-
нием. Плоскость, проходящая через образующую к. и перпен-
дикулярная осевому сечению, проведенному через эту обра-
зующую, называется касательной плоскостью конуса.
Теорема 19.2. Плоскость, перпендикулярная оси конуса,
пересекает конус по кругу, а боковую поверхность - по ок-
ружности, с центром на оси конуса.
Док-во. Пусть б - плоскость, перпендикулярная оси конуса
и пересекающая к. Преобразование гомотетии относительно
вершины к., совмещающее плоскость б с плоскостью основа-
ния, совмещает сечение к. плоскостью б с основанием к.
Следовательно, сечение к. плоскостью есть круг, а сечение
б.п. - окружность с центром на оси конуса.
Плоскость, перпендикулярная оси конуса, отсекает он него
меньший к. Оставшаяся часть называется усеченным к. Ч.Т.Д
Пирамидой, вписанной в конус, называется такая пирамида,
основание которой есть многоугольник, вписанный в окруж-
ность основания конуса, а вершиной является вершина кону-
са. Пирамида называется описанной около конуса, если ее
основанием является многоугольник, описанный около осно-
вания к., а вершина совпадает с вершиной к.