Контрольная работа: Алгебра и начало анализа

№8.Опр . Отношение катета, противолежащего острому углу прямоугольного треугольника, к катету, прилежащему к этому углу, называется тангенсом (обозначается tg ).

  1. область определения - множество всех действительных чисел, кроме чисел вида;
  2. множество значений - вся числовая прямая;
  3. функция нечетная: tg(-x) = -tg(x) для всех х из области определения;
  4. функция периодическая с наименьшим положительным периодом ;
  5. tg(x) = 0 при х = ;
  6. tg(x) > 0 для всех ;
  7. tg(x) < 0 для всех ;
  8. функция возрастает на .

№9.Опр . Отношение катета, прилежащего острому углу прямоугольного треугольника, к катету, противолежащему к этому углу, называется котангенсом (обозначается ctg )

  1. область определения - множество всех действительных чисел, кроме чисел вида ;
  2. множество значений - вся числовая прямая;
  3. функция нечетная: ctg(-x) = -ctg(x) для всех х из области определения;
  4. функция периодическая с наименьшим положительным периодом ;
  5. ctg(x) = 0 при x = ;
  6. ctg(x) > 0 для всех ;
  7. ctg(x) < 0 для всех ;
  8. функция убывает на .

Ответ № 10

  1. Числовая последовательность, каждый член которой, начиная со второго, равен предшествующему члену, сложенному с одним и тем же числом, называется арифметической прогрессией.
  2. Из определения арифметической прогрессии следует, что разность между любым ее членом и ему предшествующим равна одному и тому же числу, т. е. а2 - а1 = а3 - а2 = ... = ak - ak-1 = ... . Это число называется разностью арифметической прогрессии и обычно обозначается буквой d .
  3. Для того чтобы задать арифметическую прогрессию (аn ), достаточно знать ее первый член а1 и разность d .
  4. Если разность арифметической прогрессии - положительное число, то такая прогрессия является возрастающей; если отрицательное число, то убывающей. Если разность арифметической прогрессии равна нулю, то все ее члены равны между собой и прогрессия является постоянной последовательностью.
  5. Характеристическое свойство арифметической прогрессии. Последовательность (аn) является арифметической прогрессией тогда и только тогда, когда любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, т. е. (1)
  6. Формула n-го члена арифметической прогрессии имеет вид: an = a1 + d(n-1) . (2)
  7. Формула суммы n первых членов арифметической прогрессии имеет вид: (3)
  8. Если в формулу (3) подставить вместо аn его выражение по формуле (2), то получим соотношение
  9. Из определения разности арифметической прогрессии следует, что a1 + an = a2 + an-1 = ..., т. е. сумма членов, равноудаленных от концов прогрессии, есть величина постоянная.

Ответ № 11

  1. Числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предшествующему члену, умноженному на одно и то же не равное нулю число, называется геометрической прогрессией.
  2. Из определения геометрической прогрессии следует, что отношение любого ее члена к предшествующему равно одному и тому же числу, т. е. b2 :b1 = b3 :b2 = ... = bn :bn-1 = bn+1 :bn = ... . Это число называется знаменателем геометрической прогрессии и обычно обозначается буквой q .
  3. Для того, чтобы задать геометрическую прогрессию (bn ), достаточно знать ее первый член b1 и знаменатель q .
  4. Если q > 0 (), то прогрессия является монотонной последовательностью. Пусть, например, b1 = -2, q = 3, тогда геометрическая прогрессия -2, -6, -18, ... есть монотонно убывающая последовательность. Если q = 1, то все члены прогрессии равны между собой. В этом случае прогрессия является постоянной последовательностью.
  5. Характеристическое свойство геометрической прогрессии. Последовательность (bn ) является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов, т. е. (1)
  6. Формула n-го члена геометрической прогрессии имеет вид: (2)
  7. Формула суммы п первых членов геометрической прогрессии имеет вид: , (3)
  8. Если в формулу (3) подставить вместо bn его выражение по формуле (2), то получится соот-ношение. , (4)
  9. Из определения знаменателя геометрической прогрессии следует, что b1 bn = b2 bn-1 = …, т.е. произведение членов, равноотстоящих от концов прогрессии, есть величина постоянная.

Сумма бесконечной геометрической прогрессии при

  1. Пусть (xn ) - геометрическая прогрессия со знаменателем q , где и . Суммой бесконечной геометрической прогрессии, знаменатель которой удовлетворяет условию , называется предел суммы n первых ее членов при .
  2. Обозначим сумму бесконечной геометрической прогрессии через S . Тогда верна формула .

№ 12

Решение тригонометрических уравнений вида sin(x) = a

  1. формула для корней уравнения sin(x) = a, где , имеет вид:
    Частные случаи:
  2. sin(x) = 0, x =
  3. sin(x) = 1, x =
  4. sin(x) = -1, x =
  5. формула для корней уравнения sin2 (x) = a, где , имеет вид: x=

Решение тригонометрических неравенств вида sin(x) > a, sin(x) < a

  1. Неравенства, содержащие переменную только под знаком тригонометрической функции, называются тригонометрическими.
  2. При решении тригонометрических неравенств используют свойство монотонности триго-нометрических функций, а также промежутки их знакопостоянства.
  3. Для решения простейших тригонометрических неравенств вида sin(x) > a (sin(x) < а) используют единичную окружность или график функции y = sin(x).
    sin(x) = 0 если х = ;
    sin(x) = -1, если x = >;
    sin(x) > 0, если ;
    sin(x) < 0, если .

Ответ № 13

Решение тригонометрического уравнения cos(x) = a

  1. Формула для корней уравнения cos(x) = a, где , имеет вид: .
  2. Частные случаи:
    cos(x) = 1, x = ;
    cos(x) = 0, ;
    cos(x) = -1, x =
  3. Формула для корней уравнения cos2 (x) = a, где , имеет вид: .

Решение тригонометрических неравенств вида cos(x) > a, cos(x) < a

  1. Для решения простейших тригонометрических неравенств вида cos(x) > a, cos(x) < a используют единичную окружность или график функции y = cos(x);
  2. Важным моментом является знание, что:
    cos(x) = 0, если ;
    cos(x) = -1, если x = ;
    cos(x) = 1, если x = ;
    cos(x) > 0, если ;
    cos(x) > 0, если .

№ 14

Решение тригонометрического уравнения tg(x) = a

  1. Формула для корней уравнения tg(x) = a имеет вид: .
  2. Частные случаи:
    tg(x) = 0, x = ;
    tg(x) = 1, ;
    tg(x) = -1, .
  3. Формула для корней уравнения tg2 (x) = a, где , имеет вид:

Решение тригонометрических неравенств вида tg(x) > a, tg(x) < a

  1. Для решения простейших тригонометрических неравенств вида tg(x) > a, tg(x) < a используют единичную окружность или график функции y = tg(x).
  2. Важно знать, что:
    tg(x) > 0, если ;
    tg(x) < 0, если ;
    Тангенс не существует, если .

№ 15

  1. Формулами приведения называются соотношения, с помощью которых значения тригонометрических функций аргументов , , , , выражаются через значения sin , cos , tg и ctg .
  2. Все формулы приведения можно свести в следующую таблицу:

Функция

Аргумент

sin

cos

cos

sin

-sin

-cos

-cos

-sin

sin

cos

sin

-sin

-cos

-cos

-sin

sin

cos

cos

tg

ctg

-ctg

-tg

tg

ctg

-ctg

-tg

tg

ctg

tg

-tg

-ctg

ctg

tg

-tg

-ctg

ctg

  1. Для облегчения запоминания приведенных формул нужно использовать следующие правила:
    a) при переходе от функций углов , к функциям угла название функции изменяют: синус на косинус, тангенс на котангенс и наоборот;
    при переходе от функций углов , к функциям угла название функции сохраняют;
    б) считая острым углом (т. е. ), перед функцией угла ставят такой знак, какой имеет приводимая функ-ция углов , , .

Все вышеприведенные формулы можно получить, пользуясь следующим правилом:
Любая тригонометрическая функция угла 90°n + по абсолютной величине равна той же функции угла , если число n - четное, и дополнительной функции, если число n - нечетное. При этом, если функция угла 90°n + . положительна, когда - острый угол, то знаки обеих функций одинаковы, если отрицательна, то различны.

№ 16

  1. Формулы косинуса суммы и разности двух аргументов:

    Рис.1 Рис.2
    Повернем радиус ОА, равный R, около точки О на угол и на угол (рис.1). Получим радиусы ОВ и ОС. Найдем скалярное произведение векторов и . Пусть координаты точки В равны х1 и y1, координаты точки С равны х2 и y2. Эти же координаты имеют соответственно и векторы и . По определению скалярного произведения векторов:
    = х1 х2 + y1 y2 . (1)
    Выразим скалярное произведение через тригонометрические функции углов и . Из определения косинуса и синуса следует, что
    х1 = R cos , y1 = R sin , х2 = R cos , y2 = R sin .
    Подставив значения х1 , х2 , y1 , y2 в правую часть равенства (1), получим:
    = R2 cos cos + R2 sin sin = R2 (cos cos + sin sin).
    С другой стороны, по теореме о скалярном произведении векторовимеем:
    = cos BOC = R2 cos BOC.
    Угол ВОС между векторами и может быть равен - (рис.1), - ( - ) (рис.2) либо может отличаться от этих значений на целое число оборотов. В любом из этих случаев cos BOC = cos ( - ). Поэтому
    = R2 cos ( - ).
    Т.к. равно также R2 (cos cos + sin sin), то
    cos( - ) = cos cos + sin sin.

    cos( + ) = cos( - (-)) = cos cos(-) + sin sin(-) = cos cos - sin sin.
    Значит,
    cos( + ) = cos cos - sin sin.
  2. Формулы синуса суммы и разности двух аргументов:

    sin( + ) = cos( /2 - ( + )) = cos(( /2 - ) - ) = cos( /2 - ) cos + sin( /2 - ) sin = sin cos + cos sin.
    Значит,
    sin( + ) = sin cos + cos sin.

    sin( - ) = sin( + (-)) = sin cos(-) + cos sin(-) = sin cos - cos sin.
    Значит,
    sin( - ) = sin cos - cos sin.

№ 17

Формулы двойных углов

Формулы сложения позволяют выразить sin 2, cos 2, tg 2, ctg 2 через тригонометрические функции угла .
Положим в формулах
sin( + ) = sin cos + cos sin ,
cos( + ) = cos cos - sin sin ,
,
.
равным . Получим тождества:

sin 2 = 2 sin cos ;
cos 2 = cos2 - sin2 = 1 - sin2 = 2 cos2 - 1;
; .

№ 18

Формулы половинного аргумента

  1. Выразив правую часть формулы cos 2 = cos2 - sin2 через одну тригонометрическую функцию (синус или косинус), придем к соотношениям
    cos 2 = 1 - sin2 , cos 2 = 2 cos2 - 1.
    Если в данных соотношениях положить = /2, то получим:
    cos = 1 - 2 sin2 /2, cos 2 = 2 cos2 /2 - 1. (1)
  2. Из формул (1) следует, что
    (2), (3).
  3. Разделив почленно равенство (2) на равенство (3), получим
    (4).
  4. В формулах (2), (3) и (4) знак перед радикалом зависит от того, в какой координатной четверти находится угол /2.
  5. Полезно знать следующую формулу:
    .

№ 19

Формулы суммы и разности синусов, косинусов

Сумму и разность синусов или косинусов можно представить в виде произведения тригонометрических функций. Формулы, на которых основано такое преобразование, могут быть получены из формул сложения.
Чтобы представить в виде произведения сумму sin + sin , положим = x + y и = x - y и воспользуемся формулами синуса суммы и синуса разности. Получим:
sin + sin = sin (x + y) + sin (x - y) = sinx cosy + cosx siny + sinx cosy - cosx siny = 2sinx cosy.
Решив теперь систему уравнений = x + y, = x - y относительно x и y, получим х = , y = .
Следовательно,
sin + sin = 2 sin cos .
Аналогичным образом выводят формулы:
sin -sin = 2 cos sin ;
cos + cos = 2 cos cos ;
cos + cos

  • 1
  • 2
  • К-во Просмотров: 244
    Бесплатно скачать Контрольная работа: Алгебра и начало анализа