Контрольная работа: Анализ поведения функций при заданных значениях аргумента

Гиперболические: функция

1. Область существования:

2. Четность:функция четная

3. Функция непрерывна

4. Точки пересечения функции с осями координат: (0, 0)

5. Экстремум функции

Значения функции

x y x y x y
-3 1010,369 -1 2,131145 1 2,131145
-2,9 748,0854 -0,9 1,510096 1,1 2,976561
-2,8 553,8202 -0,8 1,054878 1,2 4,125531
-2,7 409,9402 -0,7 0,722286 1,3 5,685108
-2,6 303,383 -0,6 0,480502 1,4 7,799941
-2,5 224,4723 -0,5 0,306196 1,5 10,66543
-2,4 166,0397 -0,4 0,182396 1,6 14,54546
-2,3 122,7752 -0,3 0,096937 1,7 19,79642
-2,2 90,74509 -0,2 0,04135 1,8 26,8995
-2,1 67,03564 -0,1 0,010084 1,9 36,50441
-2 49,48836 0 0 2 49,48836
-1,9 36,50441 0,1 0,010084 2,1 67,03564
-1,8 26,8995 0,2 0,04135 2,2 90,74509
-1,7 19,79642 0,3 0,096937 2,3 122,7752
-1,6 14,54546 0,4 0,182396 2,4 166,0397
-1,5 10,66543 0,5 0,306196 2,5 224,4723
-1,4 7,799941 0,6 0,480502 2,6 303,383
-1,3 5,685108 0,7 0,722286 2,7 409,9402
-1,2 4,125531 0,8 1,054878 2,8 553,8202
-1,1 2,976561 0,9 1,510096 2,9 748,0854
-1 2,131145 1 2,131145 3 1010,369

График функции


Натуральные логарифмы:функция

1. Область существования:

2. Четность:функция ни четная, ни нечетная

3. Функция непрерывна.4. Точки пересечения функции с осями координат: (0, 0)

5. Экстремум функции

6. Точки перегиба:,

Значения функции

x y x y
-1 1 0,346574
-0,9 -0,65282 1,1 0,423149
-0,8 -0,35872 1,2 0,501784
-0,7 -0,21004 1,3 0,581106
-0,6 -0,12167 1,4 0,660077
-0,5 -0,06677 1,5 0,737953
-0,4 -0,03307 1,6 0,814228
-0,3 -0,01369 1,7 0,888577
-0,2 -0,00402 1,8 0,960809
-0,1 -0,0005 1,9 1,03083
0 0 2 1,098612
0,1 0,0005 2,1 1,164175
0,2 0,003984 2,2 1,227567
0,3 0,013321 2,3 1,288857
0,4 0,031018 2,4 1,348124
0,5 0,058892 2,5 1,405454
0,6 0,097783 2,6 1,460935
0,7 0,147453 2,7 1,514656
0,8 0,206717 2,8 1,566703
0,9 0,273772 2,9 1,617158
1 0,346574 3 1,666102


Сочетание тригонометрических, гиперболических:функция

1. Область существования:.Точка разрыва.

2. Четность:функция четная.

4. Точек пересечения функции с осями координат нет.

5. Экстремум функции

Значения функции

x y
-1 1,570796
-0,9 1,536035
-0,8 1,811123
-0,7 2,260634
-0,6 2,979172
-0,5 4,18879
-0,4 6,429951
-0,3 11,28491
-0,2 25,16974
-0,1 100,1674
0
0,1 100,1674
0,2 25,16974
0,3 11,28491
0,4 6,429951
0,5 4,18879
0,6 2,979172
0,7 2,260634
0,8 1,811123
0,9 1,536035
1 1,570796

Задание 2. Выполнить исследование методами математического анализа уравнения функции и определить значения аргумента и параметра (если он имеется). Вид уравнения выбирается самостоятельно

Циссоида(

Обе функции и определены при всех значениях . Заметим, что , при . Найдем производные и :

при, при .

К-во Просмотров: 198
Бесплатно скачать Контрольная работа: Анализ поведения функций при заданных значениях аргумента