Контрольная работа: Автоматизированные формы

Вычисляем передаточную функцию замкнутой системы:

Для определения устойчивости АС по критерию Михайлова необходимо ωω иметь передаточную функцию АС для замкнутого состояния, а ее знаменатель является характеристическим многочленом.

В характеристическом многочлене для замкнутой АС вместо оператора р подставим значение iω и получим выражение вектора Михайлова:


M(ìω) = 2(ìω)4 + 8(ìω)3 + 2(ìω)2 +2 = 2ω4 - 8 ìω3 -2ω2 + 2 =

= 2(1 - ω2 + ω4 ) +ì(-8ω)3

где R(ω) = 2 (1- ω2 + ω4 ); I(ω)= - 8ω3 .

Найдем координаты точек годографа по критерию Михайлова так же, как при построении по критерию Найквиста.

При ω→ 0 получим

R(ω)ω→0 → 2; I(ω)ω→0 =0

При ω→ + ∞ получим

R(ω)ω→∞ → + ∞; I(ω)ω→∞ =-∞

Приравнивая I(ω) = 0, находим корни уравнения:

- 8ω3 = 0; ω = 0;

Приравнивая R(ω) = 0, находим корни уравнения:

2(ω4 - ω2 + 1) = О,

2≠0

положив ω2 = х, получим

х2 -х+1=0

решаем уравнение:

Все корни получились мнимые, т.е. нет больше пересечений годографа с осью

ординат. Полученные данные заносятся в табл. 2.

Результаты вычислений

Таблица 2

ω R(ω) I(ω) ω R(ω) I(ω)
0 2 0 1 2 -8
2 26 -64
+∞ -∞

Рис. 3. Годограф по критерию Михайлова


Вывод: годограф по критерию Михайлова не пересекает последовательно оси координат, следовательно, автоматическая система неустойчива.

К-во Просмотров: 129
Бесплатно скачать Контрольная работа: Автоматизированные формы