Контрольная работа: Человеко-машинные системы, их классификация и свойства
Термин «эргономика» (греч. ergon – работа, nomos – закон) обозначает науку о взаимодействии человека-оператора с машиной и средой, объединённых в единую эргатическую систему. Эргономика возникла на стыке технических наук, психологии, физиологии и гигиены труда.
Инженерная психология является отраслью эргономики и ставит своей задачей комплексное изучение и проектирование внешних и внутренних средств деятельности человека-оператора.
Художественное конструирование подразумевает использование основных законов эргономики и технической эстетики при разработке конструкций.
Важнейший вопрос проектирования эргатических систем представляет собой строго научное разделение функций между оператором и машиной в будущей системе. Этого не может сделать ни психолог, ни физиолог, ни гигиенист, поскольку они не знают свойств машины требуемых характеристик всей системы. Это обязан сделать конструктор-разработчик, обладающий знаниями эргономики, знающий возможности оператора в системе, уровень современной автоматики и реализующий общие требования на систему.
Важность развития этой науки в областях радиотехники и конструирования РЭА подчёркивается тем примером, что сравнительный анализ ряда существующих американских ракетных систем показал, что ошибки человека-оператора составляют 20-53% всех отказов в системе. Нетрудно уяснить, какую роль играет человек-оператор в современных системах летательных аппаратов и автоматизированных системах контроля и производства.
Поэтому изучение возможностей человека-оператора в замкнутой эргатической системе, согласования его аппарата восприятия с РЭА для оптимизации основной целевой функции системы является не «модой», а такой же необходимой задачей, как и само проектирование технических средств.
В общее понятие «система» входит совокупность элементов, взаимосвязанные функции которых координированы для выполнения некоторой общей задачи.
Эргатическая система (ЭС) – это система «человек-машина», содержащая качественно разнородные компоненты – человека и технические средства.
Эргатические системы чрезвычайно разнообразны и иерархичны. Например, система «командир корабля(первый пилот) – приборы, органы управления – самолет» и система «штурман-радист – радиоаппаратура самолёта» находятся не только во взаимосвязи, но и подчинены общей более сложной системе «самолёт, выполняющий задание», которую обслуживают и ряд других наземных систем и комплексов, являющиеся также эргатическими системами.
Рис.1. Система управления
Рис.2. Система обнаружения-контроля
а) Замкнутая сервосистема
б) Аналогия слежения, осуществляемая оператором
Рис.3. Сервосистема
В настоящее время системы «человек-машина» в связи с развитием технических средств всё более и более превращается из систем контроля в системы управления, в которых человек-оператор занимает доминирующее положение. Можно привести несколько примеров моделирования как самого человека-оператора в эргатических системах, так и самих систем в целом. Например, для систем управления предлагается одна схема (рис.1.), а для систем обнаружения и контроля – другая схема (рис.2). Весьма часто проводится аналогия между эргатической системой и сервосистемой (рис.3). Сервосистема – тип следящей системы, замкнутая электромеханическая система, где на выходе воспроизводится изменённая определённым образом входная величина.
Классификация эргатических систем может быть проведена по ряду признаков. По основной целевой функции они делятся на контрольные, управления, поисковые, восстанавливающие и обучающие эргатические системы.
В первом случае выходные сигналы оператора можно не вводить в наблюдаемую им систему.
Оператор здесь включён в систему «как бы параллельной» (хотя на схеме рисунка это выглядит последовательно). Основная функция оператора – контроль, наблюдение за системой, измерение её параметров и т. п. Примером такой системы может являться работа оператора с индикатором кругового обзора ИКО.
В системе управления оператор становится непосредственным участником в выполнении системы её задачи и включён в систему «как бы последовательно» (по схеме рисунка – параллельно) с техническими элементами системы.
Основная функция оператора – регулирование, слежение, стабилизация и приведение координат выхода системы к их заданному значению. Эта система замкнута через оператора.
Системы управления имеют две разновидности: систему слежения с компенсацией и систему слежения с преследованием. В первом случае оператор наблюдает только рассогласование между текущим выходным показателем (координатой) системы и требуемым значением, и его задача состоит в том, чтобы довести величину рассогласования до нуля или до заданного уровня, то есть скомпенсировать ошибку рассогласования. Примером таких систем могут являться системы регулирования самой РЭА, системы регулирования технологических процессов и т. п.
При слежении с преследованием оператор наблюдает величину как входного, так и выходного сигнала, и его задача состоит в том, чтобы, управляя машиной, изменять выход системы и тем самым как бы «преследовать» её вход. Примерами таких систем могут являться системы посадки самолёта, работы бортовой РЛС в режиме захвата и сопровождения цели и др.
Поисковая ЭС, как правило, возникает при отказе функционирующей ЭС, когда требуется вмешательство оператора для определения причин и места отказа в системе. Она включает в себя оператора, проверяемую машину и устройство поиска.
Восстанавливающая ЭС возникает после определения причины отказа, и главная функция оператора в такой системе – восстановить систему путём ремонта или демонтажа неисправного блока.
Примерами обучающих ЭС являются различного рода тренажёры, обучающие машины и т. п.
По типу информационной модели ЭС делятся на:
1) ЭС с дифференциальной информационной моделью,
2) ЭС с интегральной информационной моделью.
Дифференциальная информационная модель (ИМ) включает в себя подробные сведения об отдельных параметрах ЭС. Как правило, информация от «машины» к оператору поступает первичная, без предварительной обработки.
При этом оператор получает точную количественную оценку состояния отдельных элементов технической части ЭС, её выходных параметров. Чтобы получить общее представление о состоянии ЭС на основе показаний детальной ИМ, оператору необходимо определённое время для обработки всей разрозненной информации. При дефиците времени это может привести к принятию неверных решений. Примером такой дифференциальной модели может служить совокупность контрольных шкальных приборов, устанавливаемых раньше в кабине лётчика.
Поэтому при современных скоростях самолётов стремятся создавать совмещённые индикаторы (рис. 4), однако, назвать их интегральной ИМ пока что нельзя.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--