Контрольная работа: Эконометрика 2
4) в появившемся диалоговом окне «Анализ данных» (рис. 5) выбрать «Регрессия»;
Рис. 5. Диалоговое окно «Анализ данных».
5) в появившемся диалоговом окне «Регрессия» (рис. 6) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»;
Рис. 6. Диалоговое окно «Регрессия».
В результате получим:
ВЫВОД ИТОГОВ | ||||||||
Регрессионная статистика | ||||||||
Множественный R | 0,416713 | |||||||
R-квадрат | 0,17365 | |||||||
Нормированный R-квадрат | 0,09368 | |||||||
Стандартная ошибка | 7,58219 | |||||||
Наблюдения | 35 | |||||||
Дисперсионный анализ | ||||||||
df | SS | MS | F | Значимость F | ||||
Регрессия | 3 | 374,508 | 124,836 | 2,171453 | 0,111346483 | |||
Остаток | 31 | 1782,178 | 57,4896 | |||||
Итого | 34 | 2156,686 | ||||||
Коэффициенты | Стандартная ошибка | t-статистика | P-Значение | Нижние 95% | Верхние 95% | Нижние 95,0% | Верхние 95,0% | |
Y-пересечение | 56,84826 | 10,01268 | 5,677626 | 3,08E-06 | 36,42724917 | 77,26927 | 36,42725 | 77,26927 |
Х1 | 0,440965 | 0,306967 | 1,436523 | 0,16087 | -0,185098139 | 1,067027 | -0,1851 | 1,067027 |
Х2 | -0,11314 | 0,13485 | -0,83899 | 0,407899 | -0,388166847 | 0,161891 | -0,38817 | 0,161891 |
Х3 | 0,104629 | 0,058561 | 1,786669 | 0,083775 | -0,014806871 | 0,224065 | -0,01481 | 0,224065 |
Уравнение регрессии полученное с помощью Excel, имеет вид:
3. По данным проведенного корреляционного и регрессионного анализа оценим статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.
Общий F-критерий проверяет гипотезу о статистической значимости уравнения регрессии. Анализ выполняется при сравнении фактического и табличного значения F-критерия Фишера.
Частные F-критерии оценивают статистическую значимость присутствия факторов в уравнении регрессии, оценивают целесообразность включения в уравнение одного фактора после другого.
t-критерий проверяет гипотезу о статистической значимости факторов уравнения регрессии.
4. Согласно проведенному анализу информативными факторами являются х1 и х2 , а также коэффициенты b1 и b2. Следовательно уравнение регрессии со статистически значимыми факторами будет иметь вид:
5. Аналитическая записка.
По результатам проведенного корреляционного анализа можно сказать, что межфакторная связь слабая, т.к. значения коэффициентов парной корреляции не превышают значения 0,4, хотя можно сказать, что наибольшая связь результативного признака с и .
Мультиколлинеарность отсутствует, т.к. ни одно значение коэффициентов не превышает 0,7.
Фактическое значение F-критерия Фишера меньше табличного, следовательно можно сказать, что полученное уравнение регрессии статистически незначимо.
По полученным значениям частных F-критериев Фишера, можно сказать, что включение фактора х2 после х3 оказался статистически незначимым: прирост факторной дисперсии (в расчете на одну степень свободы) оказался несущественным. Следовательно, регрессионная модель зависимости бонитировочного балла от количества минеральных удобрений, внесенных в почву и запасов влаги в почве является достаточно статистически значимой и что нет необходимости улучшать ее, включая дополнительный фактор х2 (коэффициент износа основных средств).
Это предположение подтверждает оценка с помощью t-критерия Стьюдента значимости коэффициентов. По результатам этой оценки:
т.е. можно сказать, что b2 и b3 статистически незначимы.
В совокупности с результатами F-статистики, делаем вывод, что из уравнения регрессии можно исключить х2 и b2 .
ЗАДАЧА 3.
В таблице приведены данные по природно-экономической зоне за 15 лет об урожайности многолетних трав на сено У, внесении удобрений на 1 га пашни Х1 и осадках за май-июнь месяцы Х2.
номер года | у | х1 | х2 |
1 | 13,6 | 161 | 360 |
2 | 14,1 | 170 | 223 |
3 | 13,2 | 188 | 144 |
4 | 18,6 | 209 | 324 |
5 | 16,9 | 240 | 227 |
6 | 21 | 334 | 212 |
7 | 22,2 | 377 | 230 |
8 | 29,6 | 399 | 204 |
9 | 31,3 | 404 | 156 |
10 | 32,1 | 451 | 200 |
11 | 26,7 | 501 | 163 |
12 | 32,8 | 538 | 315 |
13 | 31,4 | 579 | 280 |
14 | 31 | 600 | 251 |
15 | 26,1 | 614 | 386 |
Задание следует выполнить с помощью ППП MSEXCEL или любого статистического пакета прикладных программ.
Задание.
Необходимо проанализировать степень зависимости урожайности У от факторов Х1 и Х2, для этого:
1. Определить для каждого ряда данных У, Х1, Х2 первые разности (абсолютные приросты).
2. Рассчитать параметры двухфакторного линейного уравнения регрессии по первым разностям (по абсолютным приростам) и дать их интерпретацию. Охарактеризовать тесноту связи между рядами.
3. Оценить полученные результаты, выводы оформить в виде аналитической записки.
Решение.
1. Значения абсолютных приростов определяются по формулам:
Расчеты можно оформить в виде таблицы:
Номер года | |||
1 | |||
2 | 0,5 | 9 | -137 |
3 | -0,9 | 18 | -79 |
4 | 5,4 | 21 | 180 |
5 | -1,7 | 31 | -97 |
6 | 4,1 | 94 | -15 |
7 | 1,2 | 43 | 18 |
8 | 7,4 | 22 | -26 |
9 | 1,7 | 5 | -48 |
10 | 0,8 | 47 | 44 |
11 | -5,4 | 50 | -37 |
12 | 6,1 | 37 | 152 |
13 | -1,4 | 41 | -35 |
14 | -0,4 | 21 | -29 |
15 | -4,9 | 14 | 135 |
2. Для проведения корреляционного анализа воспользуемся программой «Excel»:
1) загрузить среду Excel ;
2) выделить рабочее поле таблицы;