Контрольная работа: Эволюционные процессы в мегамире(Звезды)

Когда в результате высокого давления вещество сжато до больших плотностей, как в белых карликах, то вступает в действие другой тип давления, так называемое «вырожденное давление». Оно появляется при сильнейшем сжатии вещества в недрах звезды. Именно сжатие, а не высокие температуры является причиной вырожденного давления. Вследствие сильного сжатия атомы оказываются настолько плотно упакованными, что электронные оболочки начинают проникать одна в другую.

Гравитационное сжатие белого карлика происходит в течение длительного времени, и электронные оболочки продолжают проникать друг в друга до тех пор, пока расстояние между ядрами не станет порядка радиуса наименьшей электронной оболочки. Внутренние электронные оболочки представляют собой непроницаемый барьер, препятствующий дальнейшему сжатию. При максимальном сжатии электроны уже не связаны с отдельными ядрами, а свободно движутся относительно них. Процесс отделения электронов от ядер происходит в результате ионизации давлением. Когда ионизация становится полной, облако электронов движется относительно решётки из более тяжёлых ядер, так что вещество белого карлика приобретает определённые физические свойства, характерные для металлов. В таком веществе энергия переносится к поверхности электронами, подобно тому, как тепло распространяется по железному пруту, нагреваемому с одного конца.

Но электронный газ проявляет и необычные свойства. По мере сжатия электронов их скорость всё больше возрастает, потому что, как мы знаем, согласно фундаментальному физическому принципу, два электрона, находящиеся в одном элементе фазового объёма, не могут иметь одинаковые энергии. Следовательно, чтобы не занимать один и тот же элемент объёма, они должны двигаться с огромными скоростями. Наименьший размер допустимого объёма зависит от диапазона скоростей электронов. Однако в среднем, чем ниже скорость электронов, тем больше тот минимальный объём, который они могут занимать. Иными словами, самые быстрые электроны занимают наименьший объём. Хотя отдельные электроны носятся со скоростями, соответствующими внутренней температуре порядка миллионов градусов, температура полного ансамбля электронов в целом остаётся низкой.

Установлено, что атомы газа обычного белого карлика образуют решётку плотно упакованных тяжёлых ядер, сквозь которую движется вырожденный электронный газ. Ближе к поверхности звезды вырождение ослабевает, и на поверхности атомы ионизированы не полностью, так что часть вещества находится в обычном газообразном состоянии.

Зная физические характеристики белых карликов, мы можем сконструировать их наглядную модель. Начнём с того, что белые карлики имеют атмосферу. Анализ спектров карликов приводит к выводу, что толщина их атмосферы составляет всего несколько сотен метров. В этой атмосфере астрономы обнаруживают различные знакомые химические элементы. Известны белые карлики двух типов - холодные и горячие. В атмосферах более горячих белых карликов содержится некоторый запас водорода, хотя, вероятно, он не превышает 0,05%. Тем не менее по линиям в спектрах этих звёзд были обнаружены водород, гелий, кальций, железо, углерод и даже окись титана. Атмосферы холодных белых карликов состоят почти целиком из гелия; на водород, возможно, приходится меньше, чем один атом из миллиона. Температуры поверхности белых карликов меняются от 5000 Ко у "холодных" звёзд до 50 000 Ко у "горячих". Под атмосферой белого карлика лежит область невырожденного вещества, в котором содержится небольшое число свободных электронов. Толщина этого слоя 160 км, что составляет примерно 1% радиуса звезды. Слой этот может меняться со временем, но диаметр белого карлика остаётся постоянным и равным примерно 40 000 км. Как правило, белые карлики не уменьшаются в размерах после того, как достигли этого состояния. Они ведут себя подобно пушечному ядру, нагретому до большой температуры; ядро может менять температуру, излучая энергию, но его размеры остаются неизменными. Чем же определяется окончательный диаметр белого карлика ? Оказывается его массой. Чем больше масса белого карлика, тем меньше его радиус; минимально возможный радиус составляет 10 000 км. Теоретически, если масса белого карлика превышает массу Солнца в 1,2 раза, его радиус может быть неограниченно малым. Именно давление вырожденного электронного газа предохраняет звезду от всяческого дальнейшего сжатия, и, хотя температура может меняться от миллионов градусов в ядре звезды до нуля на поверхности, диаметр её не меняется. Со временем звезда становится тёмным телом с тем же диаметром, который она имела, вступив в стадию белого карлика.

Под верхним слоем звезды вырожденный газ практически изотермичен, то есть температура почти постоянна вплоть до самого центра звезды; она составляет несколько миллионов градусов - наиболее реальная цифра 6 млн. Ко .

Теперь, когда мы имеем некоторые представления о строении белого карлика, возникает вопрос: почему он светится ? Очевидно одно: термоядерные реакции исключаются. Внутри белого карлика отсутствует водород, который поддерживал бы этот механизм генерации энергии.

Единственный вид энергии, которым располагает белый карлик – это тепловая энергия. Ядра атомов находятся в беспорядочном движении, так как они рассеиваются вырожденным электронным газом. Со временем движение ядер замедляется, что эквивалентно процессу охлаждения. Электронный газ, который не похож ни на один из известных на Земле газов, отличается исключительной теплопроводностью, и электроны проводят тепловую энергию к поверхности, где через атмосферу эта энергия излучается в космическое пространство.

Астрономы сравнивают процесс остывания горячего белого карлика с остыванием железного прута, вынутого из огня. Сначала белый карлик охлаждается быстро, но по мере падения температуры внутри него охлаждение замедляется. Согласно оценкам, за первые сотни миллионов лет светимость белого карлика падает на 1% от светимости Солнца. В конце концов белый карлик должен исчезнуть и стать чёрным карликом, однако на это могут понадобиться триллионы лет, и, по мнению многих учёных, представляется весьма сомнительным, чтобы возраст Вселенной был достаточно велик для появления в ней чёрных карликов.

Другие астрономы считают, что и в начальной фазе, когда белый карлик ещё довольно горяч, скорость охлаждения невелика. А когда температура его поверхности падает до величины порядка температуры Солнца, скорость охлаждения увеличивается и угасание происходит очень быстро. Когда недра белого карлика достаточно остынут, они затвердеют.

Массы белых карликов определены недостаточно точно. Надёжно их можно установить для компонентов двойных систем, как в случае Сириуса. Но лишь немногие белые карлики входят в состав двойных звёзд. В трёх наиболее хорошо изученных случаях массы белых карликов, измеренные с точностью свыше 10%, оказались меньше массы Солнца и составляли примерно половину её. Теоретически предельная масса для полностью вырожденной не вращающейся звезды должна быть в 1,2 раза больше массы Солнца. Однако если звёзды вращаются, а по всей вероятности, так оно и есть, то вполне возможны массы, в несколько раз превышающие солнечную.Сила тяжести на поверхности белых карликов примерно в 60-70 раз больше, чем на Солнце. Если человек весит на Земле 75 кг, то на Солнце он весил бы 2тонны, а на поверхности белого карлика его вес составлял бы 120-140 тонн. С учётом того, что радиусы белых карликов мало отличаются и их массы почти совпадают, можно заключить, что сила тяжести на поверхности любого белого карлика приблизительно одна и та же. Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар, показало, что их количество превышает 1500. Астрономы полагают, что частота возникновения белых карликов постоянна, по крайней мере, в течение последних 5 млрд. лет. Возможно, белые карлики составляют наиболее многочисленный класс объектов на небе. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. Возникает вопрос: все ли звёзды становятся белыми карликами в конце своего эволюционного пути? Если нет, то какая часть звёзд переходит в стадию белого карлика?

Полная картина образования белых карликов туманна и неопределенна. Отсутствует так много деталей, что в лучшем случае описание эволюционного процесса можно строить лишь путём логических умозаключений.

И, тем не менее, общий вывод таков: многие звёзды теряют часть вещества на пути к своему финалу, подобному стадии белого карлика, и затем скрываются на небесных «кладбищах» в виде чёрных, невидимых карликов.

3.2 Нейтронные звезды

Нейтронные звезды образуются при вспышках сверхновых звезд, если первоначальная масса звезды была в несколько раз больше массы солнца, или при аккреции[2] вещества на белый карлик в тесной двойной системе. Нейтронные звезды являются одними из самых интересных астрофизических объектов с физической точки зрения. Для них характерны такие явления и свойства как: сверхтекучесть, сверхпроводимость, сверхсильные магнитные поля, излучение нейтрино, эффекты специальной и общей теории относительности. В недрах нейтронных звезд могут существовать экзотические формы материи.

Сразу после открытия нейтрона советский физик Л.Д. Ландау (1908-1968) показал, что возможны макрообъекты, состоящие в основном из нейтронов - нейтронные звезды. Такие объекты устойчивы благодаря давлению вырожденного газа. Но это не газ электронов, как в случае белых карликов, а газ нейтронов. Нейтронные звезды имеют размеры около 10км. Т.к. нейтроны почти в 2000 раз тяжелее электронов, то при той же массе (порядка солнечной) нейтронные звезды в тысячу раз меньше белых карликов. Эти параметры соответствуют плотности около 1014 г/см3 , что порядка плотности атомного ядра. Спичечный коробок с веществом нейтронной звезды весит около десяти миллиардов тонн.

В 1934 г. Вальтер Бааде (1893-1960) и Фриц Цвикки (1898-1974) предсказали, что нейтронные звезды могут рождаться во вспышках сверхновых. Однако в целом предсказания были малообещающими с астрономической точки зрения: светимость, связанная с тепловым излучением нейтронной звезды, ничтожно мала, и в середине 20 века не было никакой надежды обнаружить нейтронные звезды. Нейтронные звезды были неожиданно открыты как радиопульсары в 1967 г. в Англии. Радиопульсары - источники периодических всплесков радиоизлучения. В ходе исследований мерцаний космических радиоисточников Джоселин Белл, работавшая под руководством Энтони Хьюиша, обнаружила строго периодический радиосигнал. После того, как была отброшена гипотеза об искусственном происхождении сигнала (его связывали с внеземной цивилизацией) наблюдения были рассекречены, и в течение очень короткого времени радиопульсары были отождествлены с нейтронными звездами.

Излучение радиопульсаров связано с мощным магнитным полем нейтронных звезд (около 1012 гаусс, для сравнения – на Земле 1 гаусс) и быстрым вращением (периоды радиопульсаров лежат в дипазоне от 0.0015 до примерно 8 секунд). Вращающийся магнит дает излучение, если магнитная ось и ось вращения не совпадают. Чем больше магнитное поле и скорость вращения, тем больше мощность излучения.

Если аккреция идет на нейтронную звезду, то выделяет большое количество энергии. Это связано с компактностью нейтронных звезд, благодаря чему падающее вещество приобретает гигантскую скорость (близкую к скорости света). Кинетическая энергия падающего вещества после столкновения с поверхностью (или в диске вокруг звезды) переходит в тепло. И оно излучается в рентгеновском диапазоне, т.к. температура достигает нескольких миллионов градусов.

Если на нейтронную звезду выпадет слишком много вещества, то она может превратиться в черную дыру, т.к. ничто (в том числе и давление вырожденного нейтронного газа) не сможет противостоять гравитации.

Нейтронные звезды образуются из массивных звезд с массами от 8-10 до 30-40 солнечных масс. Из более массивных звезд образуются черные дыры. Образование нейтронной звезды сопровождается вспышкой сверхновой - колоссальным взрывом ядра массивной проэволюционировавшей звезды. После взрыва кроме нейтронной звезды остается разлетающееся вещество - остаток сверхновой. Один из самых известных - Крабовидная туманность в созвездии Тельца. Остатки сверхновых излучают в основном в радио, оптическом и рентгеновском диапазонах спектра. Излучение связано с движением электронов и имеет нетепловую природу.

Молодая нейтронная звезда может наблюдаться как радиопульсар, а также как слабый источник в оптическом и рентгеновском диапазонах. Это возможно т.к. молодая нейтронная звезда очень горяча, ее температура порядка сотен тысяч градусов.

Оценки показывают, что в нашей Галактике должно быть несколько сотен миллионов нейтронных звезд. Большинство из них старые одиночные объекты.

Они не излучают радиоволны (стадия пульсара для одиночной звезды длится 107 -108 лет). Единственная возможность увидеть их - аккреция межзвездного вещества. Но это очень слабые объекты рентгеновского диапазона. Кроме того, исследования показывают, что лишь несколько процентов ст?

К-во Просмотров: 174
Бесплатно скачать Контрольная работа: Эволюционные процессы в мегамире(Звезды)