Контрольная работа: Фармакогнозия

R • CH2 ─ CH2 ─ COOH → R • CO ─ CH2 ─ COOH → R ─ COCH3 + CO2

Жирная кислота Кетокислота Кетон

Подобного рода кетонное прогоркание больше типично для жиров, содержащихжирные кислоты с числом углеродных атомов от 6 до 12.

Для определения присутствия в жирах альдегидов и кетонов разработаны специальные реакции. В частности, альдегиды хорошо определяются с помощью реактива Инахова и Шошина (раствор гидросульфита натрия и фуксина). После встряхивания раствора испытуемого масла в петролейном эфире с реактивом нижний слой (реактив) в случае присутствия альдегиддов окрашивается ву интенсивно фиолетовый цвет.

Кетоны определяют в отгоне масла с водяным паром, используя в качестве реактива салициловый альдегид и концентрированную соляную кислоту. После взбалтывания в пробирке пробы отгона с хлороформом на границе слоев образуется красное кольцо, а нижний слой принимает розовый цвет.

Однако чаще всего прогоркание жиров обусловливается окислением ненасыщенных жирных кислот кислородом воздуха. Последний может присоединяться по месту двойных связей, образуя перекиси:

R1 • CH2 ─ CH = CH ─ CH2 • R2 → R1 • CH2 ─ CH ─ CH ─ CH2 • R2

OO

Кислород может присоединяться также и к углеродному атому, соседнему с двойной связью, образуя гидроперекиси:

R1 • CH2 ─ CH = CH2 • R2 + O2 → R1 • CH2 ─ CH = CH ─ CH • R2

OOH

Образование перекиси и гидроперекиси подвергаются далее разложению с образованием альдегидов и кетонов. Для характерности окислительного прогорканию жира используюется константа, известная под названием перекисное число, которое выражается в процентах йода, пошедшего на разрушение перекисей. У свежего свиного сала перекисное число не превышает 0,03; при перекисном числе 0,1 этот жир органолептически проявляется как явно прогорклый.

Высыхание. Намазанные тонким слоем, жидкие жиры ведут себя на воздухе по-разному; они остаются без изменения жидкими, другие, окисляясь, постепенно превращаются в прозрачную смолоподобную эластичную пленку – линоксин, нерастворимую в органических растворителях.

Масла, не образующие пленку, называются невысыхающими. Главной составной частью в таких маслах являются глицериды олеиновой кислоты.

Масла,образующие мягкие пленки, называются полувысыхающими. Главной составной частью в таких маслах являются глицериды линолевой кислоты.

Масла, образующие плотную пленку, называются высыхающими. Главной составной частью в таких маслах являются глицериды линолевой кислоты.

Процесс высыхания — очень сложный физико-химический процесс, который начинается с окисления метиленовых групп, соседних с двойной связью, после чего следует полимеризация и сшивка полимерных цепей. Образование высокополимеров сопровождается повышением вязкости этих соединений и ухудшением их растворимости в масле, из которого они образовались. Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность). Для медицины, наоборот, более нужны масла невысыхающие, поскольку они используются для парентерального введения лекарств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свой стереоизомер — элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию. Этой реакцией, известной под названием э л а и-диновая проба, широко пользуются для определения типа масла: если проба будет положительной, следовательно, исследуемое масло будет невысыхающим.

Очень надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галоиды. Очевидно, что чем больше в жирных кислотах будет двойных связей, тем больше присоединится галоидов. Для аналитических целей удобнее всего оказалось применение йода, причем под йодным числом понимается количество граммов йода, которое способно присоединиться к 100 г жира.

Таким образом, по величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.

Гидрогенизация. По месту двойных связей, помимо галоидов, легко присоединяется также водород. В результате этого присоединения жирные кислоты из ненасыщенных переходят в насыщенные кислоты, приобретая при этом плотную консистенцию. Реакция гидрогенизации широко используется для получения плотных жиров из растительных масел. Среди них имеются пищевые жиры (маргарин, саломас) и жиры, используемые в фармации (основы для мазей и суппозиториев) и косметике.

Гидрогенизация масел проводится при высокой температуре в присутствии катализатора (губчатый никель). Регулируя приток водорода, можно получать жиры с различной температурой плавления и другими свойствами в зависимости от замещения двойных связей. Эта сторона процесса очень существенна для получения фармацевтических основ с заданными свойствами. В процессе гидрогенизации в жире могут появляться жирные кислоты, не существующие в природе. Это обычно имеет место при частичной гидрогенизации молекулы линолевой и линоленовой кислот или при перемещении двойных связей.

2. Полынь обыкновенная. Растительный источник, семейство. Лекарственное растительное сырье на латинском, русском, украинском языках. Лекарственные препараты. Фармакологическое действие. Применение в медицине

Полынь горькая.

Листя полину гір кого

Folia Absinthii

Трава полину гіркого

Herba Absinthii

Растение. Полынь горькая.

Семейство. Сложноцветные.

К-во Просмотров: 214
Бесплатно скачать Контрольная работа: Фармакогнозия