Контрольная работа: Фотосинтез

Стебель, как и весь побег в целом, представляет собой "открытую" систему роста, т.е. он длительное время нарастает, и на нем возникают новые листья.

Стебель как часть побега имеет систему меристем, поддерживающих нарастание тканей в длину и толщину. Рост в длину осуществляется за счет верхушечной и вставочных меристем, а в толщину у двудольных за счет боковых вторичных меристем – камбия и феллогена.

Первичная структура стебля складывается по мере дифференциации клеток верхушечной меристемы побега. Верхушечная меристема побега двудольных довольно рано дифференцируется на несколько групп клеток, различающихся по особенностям деления и степени меристематической активности. Наружные ее слои преобразуются в протодерму, клетки которой позднее формируют первичную покровную ткань – эпидерму.

На уровне оснований первых листовых примордиев клетки верхушечной меристемы, расположенные к периферии и в центре апекса, перестают активно делиться, увеличиваются в размерах и вакуолизируются. Из этих клеток формируются первичная кора и сердцевина.

У многих двудольных в инициальном кольце дифференцируется круг изолированных друг от друга прокамбиальных тяжей. Клетки инициального кольца, расположенные между этими тяжами, дифференцируются позднее в паренхимные элементы. На поперечных срезах эти лучи имеют вид радиальных полос, соединяющих сердцевину с первичной корой.

Прокамбий у ряда двудольных может закладываться также и в виде сплошного кольца. Он может развиваться по всей толще инициального кольца или формироваться из его части. Прокамбий является предшественником первичных проводящих тканей: первичной флоэмы и первичной ксилемы. Флоэма начинает формироваться раньше и закладывается в наружных частях прокамбиальных тяжей или прокамбиального кольца. Флоэма развивается центростремительно, т.е. самые первые элементы занимают наружное положение, а самые поздние – внутреннее. Ксилема закладывается во внутренних участках прокамбия и развивается центробежно. Таким образом, флоэма и ксилема формируются навстречу друг другу. Первые элементы ксилемы – проксилемы, узкие, сравнительно тонкостенные сосуды или трахеиды со спиральными или кольчатыми вторичными утолщениями. Метаксилема образуется несколько позднее протоксилемы и состоит из лестничных и пористых сосудов. Основным фактором, контролирующим дифференцировку как флоэмы, так и ксилемы, является фитогормон ауксин, вырабатываемый листовыми примордиями и перемещающийся по прокамбию от верхушки к основанию. Образовавшиеся из прокамбия первичные флоэма и ксилема составляют основу осевого цилиндра, или стелы.

Стела, занимающая центральную часть стебля, состоит из проводящих тканей, сердцевины, перицикла и тех постоянных тканей, которые из него возникают. К наружи от перецикла располагается первичная кора, которая состоит из из паренхимы, нередко колленхимы и иногда секреторных элементов.

Сердцевина обычно состоит из относительно тонкостенных паренхимных клеток. В сердцевине часто откладываются запасные питательные вещества. Здесь же нередко встречаются идиобласты, т.е. отдельные клетки, заполненные таннидами, кристаллами, слизью и др. Иногда часть сердцевины разрушается и образуется полость. Периферическая часть сердцевины, примыкающая к ксилеме, называется перимедуллярной зоной.

Вторичное утолщение стебля у большинства двудольных возникает довольно рано, что приводит к формированию вторичного тела растения. Эти изменения связаны главным образом с активностью боковой вторичной меристемы – камбия и отчасти другой вторичной меристемы – феллогеном. За счет появления вторичных тканей осуществляется рост растений двудольных в толщину.

Вторичные изменения в центральном цилиндре начинаются с заложения камбия. Камбий возникает из остатков прокамбия, на границе первичных ксилемы и флоэмы.

Клетки камбия сильно вакуолизированы и удлинены в вертикальном или в горизонтальном направлении. Первые – веретеновидные инициали дают проводящие элементы проводящих тканей, вторые – лучевые инициали – образуют горизонтально ориентированные лучевые клетки сердцевинных лучей. Инициальные клетки камбия способны к двум типам деления – периклинальному и антиклинальному. В первом случае клеточная пластинка закладывается параллельно поверхности стебля, во втором – перпендикулярно. В результате возникает непрерывный ряд производных клеток, тянущихся от камбия радиально кнаружи и вовнутрь. Клетки, откладывающиеся в сторону наружной поверхности и стебля, постепенно дифференцируются во вторичную флоэму, в сторону сердцевины – во вторичную ксилему.

Деятельность камбия активизируется фитогормонами гиббериллином и ауксином, поступающими из почек и молодых листьев.

В конечном итоге в структуре стебля однолетнего побега двудольного растения возможно выделить видоизмененный центральный цилиндр, включающий постоянные ткани, возникшие из перицикла, остатки первичной и вторичную флоэму, камбий, вторичную и остатки первичной ксилемы и сердцевину. Видоизмененный центральный цилиндр окружен остатками первичной коры.

2.2 Корень вторичного строения

Корень – основной орган высшего растения. Он осуществляет функцию минерального и водного питания. Другая важная функция – закрепление, "заякоривание" растения в почве.

Через корень растения поглощают из почвы воду и растворенные в ней ионы минеральных солей. В корнях осуществляется также биосинтез ряда вторичных метаболитов, в частности алколоидов.

Корень способен к метаморфозам. Наиболее часто он является местом хранения запасных питательных веществ. Иногда выполняет роль дыхательного органа, может служить органом вегетативного размножения.

Образование вторичной структуры корня связано прежде всего с деятельностью камбия, который обеспечивает рост корня в толщину. Камбий вначале возникает из тонкостенных паренхимных клеток в виде разобщенных участков с внутренней стороны тяжей флоэмы между лучами первичной ксилемы. Камбиальную активность вскоре приобретают и некоторые участки перицикла, располагающиеся кнаружи от лучей первичной ксилемы. В результате образуется непрерывный камбиальный слой.

К центру камбий откладывает клетки вторичной ксилемы, а к периферии – клетки вторичной флоэмы.

Клетки камбия, заложившегося в перицикле, образуют широкие радиальные светлые лучи паренхимы, располагающиеся между тяжами вторичной проводящей ткани. Эти лучи, иногда называемые первичными сердцевинными лучами, обеспечивают физиологическую связь центральной части корня с первичной корой. Позднее могут закладываться и вторичные сердцевинные лучи, "связывающие" вторичную ксилему и флоэму.

В результате деятельности камбия первичная флоэма оттесняется кнаружи, а "звезда" первичной ксилемы остается в центре корня. Ее "лучи" сохраняются долго, иногда до конца жизни корня.

Помимо вторичных изменений, происходящих в центральном цилиндре, существенные перемены происходят и в первичной коре. Вследствие быстрого нарастания изнутри вторичных тканей, обусловливающего сильное утолщение корня, первичная кора нередко разрывается. К этому времени клетки перицикла, делясь по всей окружности осевого цилиндра, образуют широкую зону паренхимных клеток, во внешней части которой закладывается феллоген, откладывающий наружи пробку, а внутрь феллодерму. Пробка изолирует первичную кору от проводящих тканей, кора отмирает и сбрасывается. Клетки феллодермы и паренхима, сформированная за счет перицикла, в дальнейшем разрастаются и составляют паренхимную зону, окружающую проводящие ткани. Иногда эту зону называют вторичной корой. Снаружи корни двудольных, имеющие вторичное строение, покрыты перидермой. Корка образуется редко, лишь на старых корнях деревьев.

3. ФОТОСИНТЕЗ

Фотосинтез – процесс образования органических веществ при участии энергии света – свойствен лишь клеткам, содержащим специальные фотосинтезирующие пигменты, главнейшими из которых являются хлорофиллы. Это единственный процесс в биосфере, ведущий к запасанию энергии за счет ее внешнего источника.

Ежегодно в результате фотосинтеза на Земле образуется, как полагают, 150 млрд т органического вещества (первичная продукция) и выделяется около 200 млн т свободного кислорода. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез, поддерживает современный состав атмосферы, необходимый для существования на Земле современных форм жизни. Помимо "подпитки" атмосферы кислородом, фотосинтез препятствует увеличению концентрации CO2, предотвращая перегрев Земли вследствие так называемого парникового эффекта. Фотосинтез – главнейшее звено биохимических циклов на Земле и основа всех цепей питания. Запасенная в продуктах фотосинтеза энергия – основной источник энергии для человечества.

Существуют два принципиально различных типа фотосинтеза:

1. Анаэробный фотосинтез – свойствен немногим фотосинтезирующим бактериям. Фотосинтезирующими пигментами у них будут главным образом бактериохлорофиллы, в основе которых, как и хлорофиллов, лежит порфириновый скелет. Кислород в ходе анаэробного фотосинтеза не выделяется. Это обусловлено отсутствием фотосистемы II и тем, что донором электронов выступает не вода, а сера, сероводород или некоторые другие органические соединения.

2. Аэробный фотосинтез – важнейший для современных условий жизни на Земле. Он характерен для всех оксифотобактерий, фотосинтезирующих протоктист и растений. Происходит он только в клетках, содержащих хлорофиллы. Чисто внешнее проявление этого процесса – выделение кислорода, поскольку донором электронов выступает вода.

Фотосинтез в растениях и фотосинтезирующих протоктистах осуществляется в хлоропластах. У оксифотобактерий хлоропластов нет. Отдельная клетка у этой группы организмов в известной мере соответствует отдельному хлоропласту. В такого рода организмах фотосистемы включены в соответствующие мембраны.

Фотосинтез включает два главнейших этапа, последовательно связанных между собой. Этап поглощения и преобразования энергии (явление, получившее название светового процесса) и этап превращения веществ (темновой процесс).

Световой процесс осуществляется в тилакоидах хлоропластов, темновой – главным образом в их строме.

К-во Просмотров: 261
Бесплатно скачать Контрольная работа: Фотосинтез