Контрольная работа: Гамма метод
Механизм образования кумулятивной струи из облицовки показан на рис. 4. В струю обычно переходит примерно 10% массы облицовки. Остальная часть, обжимаясь, формируется в стержень сигарообразной формы — пест, движущийся вслед за струей. Скорость струи от головной части к хвостовой снижается примерно в 3 – 4 раза, благодаря чему струя в полете растягивается и одновременно сужается в диаметре. После достижения некоторого критического значения целостность струи нарушается и она распадается на определенное число фрагментов, летящих друг за другом. Скорость хвостовой части струи составляет 2 км/с; пест имеет скорость около 1 км/с.
Рис. 4. Последовательные фазы образования кумулятивной струи при взрыве заряда с облицованной выемкой (по Н. Г. Григоряну).
а — заряд до взрыва; б — фронт волны детонации подходит к вершине выемки; в — детонация закончилась, металлическая облицовка деформируется с образованием кумулятивной струи и песта; г — образование струи и песта закончилось; д — струя разрывается на фрагменты; е — струя проникает в преграду, пест движется следом за струей
При встрече с преградой кумулятивная струя создает канал, диаметр которого больше диаметра струи. Дно канала имеет полусферическую форму. Фрагменты хвостовой части струи, не принимавшие участие в пробивании канала, скапливаются на дне канала. Летящий вслед за струей пест в зависимости от соотношения его диаметра и диаметра канала может достичь дна или застрять где-то в канале. Это снижает эффективность перфорации. Поэтому стремятся в зарядах создать такие условия, чтобы диаметр пробиваемого канала был как можно больше, а пест имел бы малый диаметр или не образовывался бы вовсе.
Горные породы в тонком слое вокруг стенок канала несколько уплотняются, что приводит к снижению их проницаемости до 20%. Материал струи (металл) и ее высокая температура влияния на коллекторские свойства практически не оказывают. Металл распыляется по стенкам канала тончайшим слоем. Высокая температура струи, которая составляет порядка 1000°С, не успевает сплавить горную породу из-за кратковременного воздействия. Весь процесс протекает 100 мкс. Кумулятивный заряд перфоратора (рис. 5) представляет собой прессованную шашку бризантного ВВ цилиндрической, конической пли овальной формы — кумулятивная выемка, в которую вставлена металлическая воронка.
Рис. 5. Кумулятивные заряды.
а — заряд ЗПРВ для перфоратора ПРВ; б — заряд ЗКПРУ для разрушающего усовершенствованного перфоратора КПРУ; / — кумулятивная воронка; 2 — крышка; 3 — заряд ВВ; 4 — детонатор промежуточный; 5 — корпус
Кумулятивный заряд перфоратора (рис. 5) представляет собой прессованную шашку бризантного ВВ цилиндрической, конической пли овальной формы – кумулятивная выемка, в которую вставлена металлическая воронка. В основании заряда находится детонатор. Инициирование взрыва снаряда производится от взрыва общего гибкого детонирующего шнура, который, в свою очередь, возбуждается от соответствующего взрывного устройства, чаще взрывного патрона.
Форма заряда позволяет уменьшить массу ВВ, не участвующую непосредственно в образовании кумулятивной струи, благодаря чему уменьшается вредное воздействие взрыва на корпус перфоратора или обсадную колонну.
По способу герметизации кумулятивных зарядов перфораторы делятся на две группы: корпусные и бескорпусные. Корпусные, в свою очередь, подразделяются на перфораторы с многократным использованием корпуса, обозначение которых ПК, и однократного использования – ПКО, ПКОС, ПНК. Бескорпусные перфораторы выпускаются частично разрушающимися — ПКС, ПКР и полностью разрушающимися – КПР, ПР.
В корпусных перфораторах заряды и средства взрывания (детонирующий шнур и взрывной патрон) изолированы от внешней среды стальным корпусом, который выдерживает высокие гидростатические давления. Стальной корпус позволяет применять перфораторы этого класса в скважинах на больших глубинах при высоких температурах .и давлениях. Кроме того, корпусные перфораторы не загрязняют ствол скважины после перфорации и не оказывают разрушающего влияния на обсадную колонну и цементный камень в затрубном пространстве.
Кумулятивные корпусные перфораторы многократного использования типа ПК имеют толстостенный стальной герметичный корпус, в стенках которого против каждого заряда расположены гнездовые отверстия для прохождения кумулятивной струи. Каждое отверстие герметизируется металлической пробкой и резиновым уплотнением. Оси соседних зарядов и гнездовые отверстия располагаются с шагом, обеспечивающим необходимую плотность перфорации, и сдвинуты относительно соседнего заряда на 90°. Минимальное расстояние между соседними зарядами 75—85 мм. В одном корпусе размещено 10— 12 зарядов. Для увеличения числа зарядов, одновременно опускаемых в скважину, корпусы перфораторов можно соединить. Один корпус выдерживает до 40 групповых взрывов.
В перфораторах ПКЮЗ, ПК85, ПКЮ5ДУ, ПК85ДУ применяются заряды в бумажнолитых оболочках. В перфораторах ПК95Н и ПК80Н заряды упакованы в массивные цинковые оболочки, а отверстия в корпусе перфоратора уплотнены винтовыми пробками с резиновыми кольцами. Пробивная способность, этих зарядов повышенная.
В корпусных перфораторах однократного использования (ПКО, ПКОТ) корпус изготовляется из сплошной тонкостенной трубы, простреливаемой кумулятивными струями. Для изготовления корпусов могут быть использованы насосно–компрессорные или бурильные трубы. Преимущество перфоратором этого типа — возможность применения более мощных зарядов. Преимущество заключается также в том, что они позволяют спускать в скважину одновременно до 100 зарядов, а за одну операцию простреливать интервал мощностью до 10м.
Недостатки перфораторов ПКО: невозможность применения их на небольших глубинах (при гидростатических давлениях менее 10 МПа корпус разрушается); большой расход металла на одну операцию.
Все перфораторы, как правило, спускают в скважину на кабеле. Исключение составляют перфораторы типа ПНК, спускаемые в скважину на насосно-компрессорных или бурильных трубах. Отличие их от перфораторов ПК и ПКО заключено в конструкции взрывного устройства, которое размещено в головной части перфоратора не снабжено механическим приводом. Срабатывает механический привод под действием давления резинового шара: шар проталкивается по трубам потоком промывочной жидкости, закачиваемой насосом или компрессором.
Корпус перфоратора состоит из отдельных секций, соединенных переходником с устройством передачи детонации. Внутри каждой секции размещены гирлянда кумулятивных зарядов и отрезок детонирующего шнура.
Перфораторы типа ПНК обладают рядом преимуществ перед аппаратами других типов. Прежде всего, они позволяют вскрывать пласт при депрессии или равенстве давлений пластового и скважинного. Заряды обладают большой мощностью. За один спуск можно вскрыть интервалы мощностью до 60м. Перфораторы позволяют проводить перфорацию в наклонно – направленных скважинах при больших углах искривления ствола. Поскольку для спуска перфоратора ПНК в скважину не требуется кабель и геофизический подъемник, он получил распространение при испытании и освоении скважин в труднодоступных районах Крайнего Севера, Сибири.
В бескорпусных перфораторах герметизируется индивидуальной оболочкой каждый отдельный заряд. Оболочка выдерживает гидростатическое давление, но разрушается при взрыве. Материал герметизирующих оболочек — стекло, керамика, ситалл, алюминий. Заряды собирают в длинные гирлянды. Взрывание производится детонирующим шнуром, срабатывающим от взрывного патрона.
В зависимости от вида механической сборки бескорпусные перфораторы могут быть частично или полностью разрушающимися.
В бескорпусных частично разрушающихся перфораторах заряды монтируются в стальной ленте или в стальных проволочных каркасах. После срабатывания зарядов деформированный каркас вместе с грузом извлекается из скважины.
В бескорпусных полностью разрушающихся перфораторах заряды собираются в длинные гирлянды с помощью звеньев разнообразной конструкции, которые при взрыве разрушаются и остаются в скважине. На поверхность поднимается кабель с наконечником.
Бескорпусные перфораторы имеют свои недостатки. Прежде всего, это значительное воздействие взрыва зарядов на обсадную колонну и цемент в затрубном пространстве. Кроме того, в скважине после взрыва остается значительное количество осколков оболочек и звеньев конструкции гирлянды. Однако эти перфораторы имеют и важные преимущества, основные из которых – возможность проводить работы в скважинах через насосно-компрессорные трубы, опущенные с открытым концом, вскрывать значительные по мощности интервалы. Это позволяет сократить время, затрачиваемое на испытание скважины и в конечном счете на освоение месторождения.
Вопрос № 3.
Опишите как определяется пористость по данным акустического метода.
Акустический метод в модификации регистрация интервального времени DТ продольных волн (обеспеченной серийной аппаратурой) позволяет определять коэффициент пористости в карбонатных и терригенных породах с пористостью 5—25% при хорошем акустическом контакте между зернами минерального скелета, который характерен для сцементированных пород. В слабосцементированных (пески, алевролиты, терригенные породы с высокой глинистостью), а также в плотных карбонатных породах с интенсивной трещиноватостью, для которых характерен слабый акустический контакт между зернами или блоками породы и как следствие интенсивное ослабление акустического сигнала, акустический метод неприменим для определения коэффициента пористости. Все интервалы залегания в разрезе таких пород характеризуются повышенными или высокими значениями а — коэффициента ослабления амплитуды упругой волны.
В породах, для которых возможно применение акустического метода для определения kп в зависимости от класса коллектора и структуры его перового пространства устанавливается тот или иной вид пористости. Так, в межзерновом коллекторе, терригенном или карбонатном, при отсутствии трещин и каверн по величине DТ определяют открытую межзерновую пористость, которая, как правило, не отличается от общей пористости за исключением отдельных видов коллектора, в основном карбонатного имеющего закрытые поры. В кавернозно-межзерновом карбонатном коллекторе при отсутствии трещин или незначительной трещиноватости по величине DТ находят значение kn , близкое к межзерновой пористости матрицы, если пустоты (условно каверны) имеют значительные размеры. В сложном трещинно-кавернозно-поровом карбонатном коллекторе в зависимости от коэффициента трещиноватости и ориентации трещин, а также размеров и взаимного расположения каверн по значению DТ определяют или величину, близкую к kп общ либо к kпмз матрицы, или какое-то промежуточное между ними значение kп
Физической основой определения kп по данным акустического метода является уравнение среднего времени
DТп =DТск(1 – kп) + DТжkп, ( 1 )