Контрольная работа: График и его элементы. Классификация видов графиков

Рис.1.5 Масштабы

Как правило, масштаб определяется примерной прикидкой возможной длины шкалы и ее пределов. Например, на поле в 20 клеток надо построить шкалу от 0 до 850. Так как 850 не делится удобно на 20, то округляем число 850 до ближайшего удобного числа, в данном случае 1000 (1000: 20 = = 50), т.е. в одной клетке 50, а в двух клетках 100; следовательно, масштаб - 100 в двух клетках.

Из неравномерных шкал наибольшее распространение имеет десятичная логарифмическая шкала.

Основная идея логарифмической шкалы состоит в том, что в ней интервалы пропорциональны не изображаемым величинам, а их логарифмам. Такой подход имеет преимущество: возможность уменьшения размеров больших чисел через их логарифмические эквиваленты. Однако график с масштабной шкалой в виде логарифмов малодоступен для понимания. Необходимо рядом с линиями логарифмов, обозначенными на масштабной шкале, проставить сами числа, характеризующие уровни изображаемого показателя.

Методика построения логарифмической шкалы следующая.

На логарифмической шкале начало отсчета начинается не от 0, а от 1, так как lg 1=0. Деления логарифмической шкалы размещаются на постоянно уменьшающемся расстоянии друг от друга. Например, если длина шкалы равна 10 см, первое деление шкалы, соответствующее числу 2, будет расположено от начала отсчета шкалы на расстоянии 3,1, а второе, соответствующее числу 3, - на расстоянии 4,77 и т.д. Полученная логарифмическая шкала изображена на рис.1.6

Рис.1.6 Прямолинейная логарифмическая шкала

Неравномерные интервалы логарифмической шкалы обусловлены тем, что разность логарифмов двух чисел является постоянной величиной при заданном отношении данных чисел независимо от их абсолютных значений. Графически это свойство выражается в том, что расстояние между делениями 2 и 3 то же, что и между делениями 4 и 6 или 6 и 9, а в числах оно выражается в том, что разность логарифмов указанных чисел также является постоянной величиной, равной 0,176.

Графические интервалы логарифмической шкалы, соответствующие числовым интервалам: 1 - 10, 10 - 100, 100 - 1000 и т.д., имеют одинаковую длину и называются циклами или модулями. Деления шкалы в каждом отдельном цикле располагаются одинаково, потому что числа каждого цикла отличаются от предыдущего в 10 раз, следовательно, их логарифмы имеют одинаковые мантиссы и различаются только характеристиками. Например, в интервале 1-10 характеристика чисел равна 0, от 10 до 100-1, от 100 до 1000-2; мантиссы же чисел, скажем, 2, 20, 200, равны одному и тому же числу - 301. Следовательно, в логарифмической шкале повторяются совершенно идентичные по своему построению циклы, которые могут замещать друг друга.

Чтобы облегчить построение и чтение диаграммы, через деления логарифмической шкалы обычно проводят прямые линии, которые образуют соответствующую координатную сетку.

Если логарифмическая шкала нанесена на обе оси координат, то координатная сетка называется логарифмической, а если логарифмическая шкала нанесена только на одну из осей координат, координатная сетка называется полулогарифмической. Она имеет очень широкое распространение в диаграммах.

Наиболее часто логарифмический масштаб наносится на ось ординат, а на оси абсцисс располагают равномерную шкалу для отсчета времени по принятым интервалам (годам, кварталам, месяцам, дням и пр).

Важным элементом графика является экспликация. Каждый график должен иметь словесное описание его содержания. Оно включает в себя название графика, передающее в краткой форме его содержание, подписи вдоль масштабных шкал и пояснения к отдельным частям графика, раскрывающие смысл отдельных элементов графического образа.

Общий заголовок диаграммы должен ясно, точно и кратко, желательно одним предложением, раскрывать ее основное содержание и давать характеристику места и времени, к которым относятся приведенные данные.

На каждой масштабной шкале диаграммы должны быть кратко указаны располагаемые на них величины, а также соответствующие им единицы измерения. Числовые обозначения располагают следующим образом: на горизонтальной шкале (оси абсцисс) - под ней, слева направо в порядке возрастания, а на вертикальной шкале (оси ординат) - слева от нее, снизу вверх в порядке их возрастания. Чтобы правильно обозначить числом начало координатных осей, необходимо выполнять правило: если обе оси имеют нуль в начале координат, то нуль наносится только один раз, если же одна или обе координатные оси начинаются не с нуля, то в начале координат наносятся два числа. Название показателей, которые относятся к оси абсцисс, записывают под осью или рядом с ней справа, а те, что относятся к оси ординат, - под этой осью или рядом с ней слева, снизу вверх.

Числовые обозначения на масштабных шкалах позволяют лишь ориентировочно определить количественные изменения изображаемого явления. Поэтому диаграмма всегда должна сопровождаться данными, которые могут быть приведены или на самой диаграмме, или рядом с ней в виде отдельной таблицы.

Объяснительные надписи, которые раскрывают содержание отдельных элементов графического образа, могут помещаться или на самой диаграмме в виде так называемых ярлыков, или в виде легенды - специально вынесенных за пределы графического образа условных обозначений. В случае применения ярлыков надписи должны быть по возможности более краткими, но точными и размещены таким образом, чтобы было совершенно ясно, к какому элементу графического образа они относятся. Ярлыки удобнее легенды тем, что требуют меньше зрительных усилий при чтении диаграммы. Легенда применяется в тех случаях, когда надписи из-за недостатка места на поле диаграммы размещать неудобно или они слишком длинные. Особенно целесообразна легенда в том случае, если ее можно использовать для нескольких диаграмм.

Диаграмма может сопровождаться примечаниями, в которых указаны источники данных, раскрыты содержание и методика их получения.

Надписи на диаграмме для удобства чтения рекомендуется размещать горизонтально.

2. Классификация видов графиков

Существует множество видов графических изображений. Их классификация применительно к целям графической обработки статистических данных в энергетике, экономике, экологии следующая:

а) по форме графического образа;

б) по способу построения и задачам изображения.

2.1 Классификация графиков по форме графического изображения

Формы графического образа разнообразны: геометрические и фигурные (негеометрические) знаки с плоскостным или объемным изображением. В соответствии с этим различают графики точечные, линейные, плоскостные и пространственные (объемные).

При построении точечных диаграмм в качестве графических образов применяются совокупности точек; при построении линейных - линии, изолинии. Основной принцип построения всех плоскостных диаграмм сводится к тому, что величины изображаются в виде геометрических фигур и, в свою очередь, подразделяются на столбиковые, полосовые, круговые, секторные, квадратные и фигурные, фоновые. Эти же принципы построения относятся и к объемным графикам, кроме того, к ним относится особая форма объемного графического образа - поверхностное распределение, отражающее зависимость одновременно трех величин.

Классификация графиков по форме графического образа приведена на рис.2.1.

Рис.2.1 Классификация графиков по форме графического образа

2.2 Классификация графиков по способу построения и задачам изображения

По способу построения и задачам изображения графики делятся на диаграммы, графические карты, контрольные карты, взаимосвязанные графики (рис.2.2).

К-во Просмотров: 228
Бесплатно скачать Контрольная работа: График и его элементы. Классификация видов графиков