Контрольная работа: Использование потенциометрического эффекта для измерения физических величин
Прежде чем детально анализировать особенности, достоинства и недостатки технологии толстопленочных потенциометров (рисунки 2.3, 2.4, 2.5, 2.6), которые сегодня чрезвычайно широко распространены в автоэлектронике, необходимо отметить, что возможно и объединение обеих технологий с так называемыми hybrid coil - гибридными резисторными катушками-спиралями, допускающими многооборотные изменения. Гибридный резистивный элемент представляет собой резистор wirewound, поверх которого нанесена проводящая пластмассовая или резиновая паста, что делается для достижения бесконечного (в теории) разрешения (рисунок 2.7) и максимальной функциональной точности. Хотя концептуальный эскиз автора на рисунке 2.2 также иллюстрирует возможность получения бесконечного разрешения с резистором wirewound-типа, на практике большинство конструкций wirewound-резисторов позволяют получить только скачкообразное дискретное разрешение, если датчик линейных перемещений используется как реостат в схеме делителя напряжения. На рисунке 2.7 показано, как скачкообразность разрешения устраняется в гибридной катушке сопротивления. Линейные перемещения могут быть эквивалентны многооборотному угловому движению, как показано на рисунке 2.2, для которого линейное перемещение движка выполняется в осевом направлении. Кроме того, гибридные катушки позволяют повысить срок службы потенциометров, который для резисторов wirewound-типа сейчас достигает 2 млн циклов, и занять промежуточное положение по этому параметру между wirewound-резисторами и толстопленочными потенциометрами (для которых срок службы может быть свыше 8 млн циклов). Потребляемая мощность - порядка нескольких Вт, сравнимая с wirewound-резисторами, температурная стабильность - также превосходная, как у wirewound-потенциометров.
В типичном толстопленочном автомобильном резисторном датчике к его движущейся части, такой как установочная втулка датчика угла, жестко механически связанной с валом управляющего привода или активатора клапана, прикрепляется подвижный рычаг - токосъемник, одновременно осуществляющий скользящий электрический контакт подвижных контактирующий щеток с резистивным слоем (рисунки 2.1, 2.3, 2.4, 2.5) [2]. Помимо резистивного элемента - дорожки на печатной плате, движка, управляющего вала - корпус устройства включают также подшипники, например шариковые, и уплотнение, а также возвратную пружину (на рисунках 2.1 - 2.7 эти элементы не показаны).
Питание датчика осуществляется от источника постоянного напряжения Vin . Для защиты датчика от перегрузок напряжения питания последовательно включаются переменные резисторы R1 , R2 . В датчик также могут включаться подстроечные переменные резисторы или постоянные резисторы при индивидуальной настройке устройства.
При перемещении скользящего контакта по радиусу токопроводящего сектора поверх резистивного слоя потенциометра его выходное сопротивление Rj изменяется пропорционально углу поворота детектируемого объекта j (как показано на рисунках 2.1, 2.3, 2.5). Очевидно, этот тип датчиков может быть легко линеаризован простым разворачиванием кругового сектора вдоль его длины.
Потенциометрическое напряжение благодаря пропорциональной связи между длиной дорожки с ее электрическим сопротивлением и, в соответствии с законом Ома, представляет собой линейное постоянное напряжение Vout (рисунки 2.1, 2.5, 2.6).
Чем ближе находится движок к уровню напряжения питания Vin , тем выше выходной сигнал датчика Vout . На выходе устройства пропорциональный выход напряжения Vout снимается с использованием высокоимпедансной нагрузки (порядка нескольких сотен кОм). Напряжение движка должно подключаться, например, также к высокоимпедансному операционному усилителю. Стандартное подключение подвижного контакта выполняется с помощью второй контактной дорожки, состоящей из того же резистивного материала. Во избежание износа и погрешности измерений ток в зоне контакта минимизируют (Iout желательно устанавливать менее 1мкА, но в спецификациях современных устройств это значение может достигать нескольких мА или десятков или сотен мА).
Проволочные спирали wirewound coils или гибридные угловые датчики функционируют аналогично толстопленочным (в концепции, представленной на рисунке 2.2, теоретически даже возможна навивка второй спирали для имитации второй контактной дорожки - измерительной); преимущество в том, что детектирование угла j при спиральном перемещении движка возможно в пределах всей высоты спирали.
Хотя толстопленочные потенциометры могут измерять угловые диапазоны только в пределах 360°, причем с неизбежной мертвой зоной, этого оказывается достаточно для стандартных автомобильных угловых задач, при этом датчики просты в эксплуатации и конструировании, отличаются низкой ценой, достаточным сроком службы, что и объясняет их наиболее широкую популярность в автоэлектронике.
В спецификациях автомобильных толстопленочных потенциометров часто вводится определение положительной и отрицательной независимой линейности (на рисунке 2.5 обозначена буквой L) - максимального отклонения (положительного и отрицательного) выходного напряжения от теоретической прямой линии ±Vout _ max . Причем наклон (градиент) и точки пересечения теоретической прямой с реальной характеристикой обычно производителями выбираются так, чтобы суммарная ошибка ±Vout _ max была минимизирована или отрицательные и положительные отклонения - DVout _ max и +DVout _ max были равны.
Для вычисления независимой нелинейности используются как абсолютные отклонения выходного напряжения ±DVout _ max , так и отклонения от прямой линии нормализованной характеристики Vout / Vin (j) выходного напряжения, отнесенного к входному напряжению, в зависимости от механической входной величины -
±DVout / Vin (j) 100%.
Типичные значения ошибок этой, обычно нормализованной величины, выражаемые в процентном отношении, составляют сегодня менее 0,5% - до 0,02%. При составлении спецификаций, как правило, измеряется разница между характеристиками рассматриваемого и эталонного потенциометра.
В отличие от независимой линейности, абсолютная нелинейность, которую также приводят в спецификациях датчиков, используют не переменный, а полностью определенный наклон, причем с индексной точкой, однозначно определяющей соотношение между входной величиной и выходным напряжением или нормализованной характеристикой Vout / Vin (j) (как правило, индексная точка задается на середине механического диапазона и пересечении теоретической кривой с фактической передаточной характеристикой). Абсолютная нелинейность потенциометров лежит в пределах 2%. Эта цифра нелинейности может только приблизительно оценить точность устройства - в диапазоне 120° при наклоне передаточной характеристики в 45° двухпроцентная погрешность соответствует 2,4°. Поскольку существуют и другие факторы, снижающие точность, например, смещение и гистерезис, разброс входного и выходного сопротивления, помехи при передаче сигнала, в действительности ошибка может быть еще больше. Все же по стабильности этого параметра в полном диапазоне потенциометры функционируют лучше стандартных датчиков Холла.
Потенциометры, имеющие выходную характеристику, подобную показанной на рисунке 2.6, в полном механическом диапазоне - от нулевого до максимального механического угла поворота (jmax ) или максимального линейного хода (Imax ) подвижной системы датчика, предлагают больший в сравнении с датчиками Холла полный диапазон эффективного электрического угла поворота подвижной системы jeff , хотя выходное напряжение при положении движка около верхней границы дорожки вблизи терминала Vout обычно не измеряется; кроме того, отношение Vout / Vin (D) никогда не достигает единицы.
В спецификациях потенциометров также может быть рекомендован функциональный диапазон - участок с наибольшей линейностью (jlin), определяемый, например, по заданным предельным уровням выходного напряжения. Для угловых датчиков общим является то, что при аксиальном смещении осей вала привода и вала углового датчика будет возникать систематическая ошибка линейности, которая увеличивается в том случае, если соединительный радиус уменьшается относительно эксцентриситета вращения. Максимальная относительная ошибка линейности определяется выражением
Lmax = e /pr, (2.1)
где е - эксцентриситет (эллипса - отношение расстояния между фокусами эллипса к длине его большей оси, или, для гиперболы, отношение расстояния между фокусами к расстоянию между вершинами);
r - радиус механического соединителя датчика и управляющего вала.
Поэтому любые механические ошибки и смещения для улучшения линейности желательно сводить к минимуму.
Но преимуществом датчика Холла является бесконтактность, а резистивные технологии (и wirewound coils, и потенциометры с резистивными дорожками, и гибриды) являются контактными, что означает непосредственный механический контакт движущейся части, осуществляющей формирование электрического сигнала, с неподвижной электрической частью. Следовательно, резистивные датчики подвержены старению и износу. Чувствительность к угловому или линейному перемещению или градиент передаточной характеристики), определяемая как единичное приращение передаточной характеристики (наклон или фактор масштаба первичной или выходной (усиленной) кривой) изменяется, причем иногда в большую сторону:
S = DVout / Dj, мВ/°, (2.2)
или S = DVout / Dl, мВ/мм.
(Так как сопротивление при износе увеличивается, значит, при постоянном Iout и R3 увеличивается и Vout , и DVout ), но, вообще говоря, чувствительность изменяется неравномерно.
Из-за того, что потенциометры - устройства контактного типа, они могут иметь заметный гистерезис, при этом зависят от вибрации. Работа контактов сопровождается акустическим и электромагнитным шумом, хотя эти недостатки могут и не вносить значительного вклада в ухудшение рабочих характеристик датчика.
Важный качественный критерий потенциометра - его контактное сопротивление, или сопротивление между терминалом движка и точкой незамедлительного контактирования с резистивным слоем. Контактное сопротивление может быть разделено на три компонента [6]:
интегральное падение напряжения между токонесущей дорожкой и поверхностью контакта (порядка сотен Ом), практически полностью определяемое технологией производства;
внешнее переходное сопротивление вследствие неидеального перехода между движком и потенциометрической дорожкой из-за присутствия непроводящих материалов в элементах контактирования - оксидов, хлоридов, сульфидов металла, смешанных с органическими веществами, поэтому контроль качества материалов в потенциометрической технологии имеет первостепенное значение;
динамические силы, воздействующие на движок при высокоскоростной работе, что предотвращает демпфирование движков; с демпфированием достижима скорость работы до 10 м/с.
Ток Iout , протекающий через движок, оказывает значительное влияние на нелинейность характеристики. Так, ток движка порядка 10 мкА и контактное сопротивление в 10 кОм для потенциометра с номинальным сопротивлением 2 кОм дадут постоянную нелинейность в 1,1%. Сходная ситуация возникает при подключении омической нагрузки.