Контрольная работа: Исследование операций и теория систем 2

1,5x1 + x2 + 2x3+ x4 £ 6500;

x1 + 2x2 + 0x3+2x4 £ 4000;

4x1 + 5x2 + 5x3+4x4 £11000;

2x1 + x2 +1,5x3+0x4 £ 4500;

x1 + 2x2 +1,5x3+4x4 £ 4500.

Приведём полученную математическую модель к виду ОЗЛП с помощью добавочных неотрицательных переменных, число которых равно числу неравенств:

1,5x1 + x2 + 2x3+ x4 + x5 = 6500;

x1 + 2x2 + 0x3+2x4 + x6= 4000;

4x1 + 5x2 + 5x3+4x4 + x7=11000;

2x1 + x2 +1,5x3+0x4 + x8 =4500;

x1 + 2x2 +1,5x3+4x4 + x9 =4500.

Итак, выберем x1, x2, x3, x4 - свободными переменными, а x5, x6, x7, x8, x9 - базисными переменными (каждая из них встречаются в системе лишь в одном уравнении с коэффициентом 1, а в остальных с нулевыми коэффициентами). Приведём систему к стандартному виду, выразив для этого все базисные переменные через свободные:

x5 = 6500 – (1,5x1 + x2 + 2x3+ x4 );

x6 = 4000 – ( x1 + 2x2 + 0x3+2x4);

x7 =11000 - ( 4x1 + 5x2 + 5x3+4x4);

x8 =4500 – ( 2x1 + x2 +1,5x3+0x4);

x9 =4500 – ( x1 + 2x2 +1,5x3+4x4)

L=0 –(- x1- 2x2 - 1,5x3 - x4)

Решим методом симплекс-таблиц:

Это решение опорное, т.к. все свободные члены положительны.

Выберем столбец в таблице, который будет разрешающим, пусть это будет x1, выберем в качестве разрешающего элемента тот, для которого отношение к нему свободного члена будет минимально (это x8).

A

L

0

2250

К-во Просмотров: 2477
Бесплатно скачать Контрольная работа: Исследование операций и теория систем 2