Контрольная работа: Измерительные преобразователи электрических величин
Индукционные преобразователи.
Преобразователи, в которых используется яление электромагнитной индукции, т.е. наведение ЭДС в электрическом контуре при изменении магнитного потока, называются индукционными.По принципу действия индукционные преобразователи подразделяются на две группы.В преобразователях первой группы магнитное сопротивление постоянного магнитного потока остается неизменным, а индуцированная ЭДС наводится из-за линейных или угловых перемещений сердечника катушки в зазоре ( рис. 9.).
Н1
![]() |
UI II
К1
UII = UI II - UII II
U1
Н2
UII II
К2
![]() |
![]() |
От ЧЭ Рис. 9. Индукционный преобразователь.
В некоторых конструкциях перемещается катушка. Конструктивно преобразователь представляет собой катушку, имеющую три обмотки.
Первичная обмотка равномерно распределена по всей длине. Две вторичные обмотки выполнены в виде отдельных секций с одинаковым числом витков. Внутри каркаса размещен сердечник, связанный со штоком чувствительного элемента., где:
- ЭДС верхней вторичной обмотки;
- ЭДС нижней вторичной обмотки;К – коэффициент продолжительности;
- частота переменного напряжения, подаваемого на первичную обмотку;
- напряжение первичной обмотки;М – взаимоиндуктивность первичной и вторичных обмоток.Так как вторичные обмотки включены встречно, то суммарное напряжение на выходе преобразователя в среднем положении сердечникаравно нулю:
.При изменении давления сердечник перемещается, например, вверх. Вследствие этого взаимоиндуктивность катушек изменяется на
. ЭДС во вторичных обмотках будут иметь:
На выходе преобразователя будет действовать напряжение
При перемещении сердечника вниз на выходе преобразователя действует напряжение Изменение взаимоиндуктивности
пропорционально изменению положения сердечника
:
.
Таким образом, величина действующего напряжения Uii определяется перемещением сердечника и пропорциональна этому перемещению.
В преобразователях второй группы магнит и катушка неподвижны. А индуцированная ЭДС наводится путем изменения магнитного потока вследствие колебания магнитного сопротивления магнитной цепи, создаваемых чаще всего изменением воздушного зазора этой цепи
Рис. 10. Конструкции индукционных преобразователей.
При вращении ротора происходит изменение сопротивления магнитной цепи с частотой, определяемой скорость вращения и числом зубцов. Индукционные преобразователи, предназначенные для измерения скорости вращения, называют тахогенераторами. Тахогенераторы – это электрические машины, работающие в генераторном режиме и служащие для преобразования скорости вращения в пропорциональный электрический сигнал.
1.2.3 Емкостные преобразователи
В основу работы емкостного преобразователя положено изменение его емкости под действием входной измеряемой величины. Емкость плоского конденсатора, как известно, выражается формулой
=
S / δгде
— диэлектрическая проницаемость среды между обкладками; S — площадь поверхности обкладки; δ - расстояние между обкладками, или толщина диэлектрика. Таким образом, изменение емкости преобразователя можно получить, изменяя:1) расстояние между обкладками (рис. 11, а); 2) площадь электродов, образующих емкость (рис. 11,6); 3) диэлектрическую проницаемость диэлектрика (рис. 11, в). Как видно из формулы зависимость емкости от диэлектрической проницаемости и площади пластин имеет линейный характер, а от расстояния между пластинами - нелинейный, гиперболический характер.Если обозначить емкость, в отсутствие измеряемой величины через
, а в момент измерения
, то изменение емкости составляет:
=
–
Рис.11. Основные типы емкостных преобразователей
Емкостные преобразователи с изменяющимся воздушным зазором используют для измерения малых перемещений (от долей микрометра до долей миллиметра), для измерения силы, давления при наличии промежуточных преобразователей силы и давления в перемещение.
Преобразователи с изменяющейся площадью применяют для измерения больших. линейных и угловых перемещений.
Преобразователи с изменяющейся диэлектрической проницаемостью чаще всего используют для измерения влажности твердых тел (тканей, пластмасс), сыпучих тел, аморфных (например, мазута), а также для измерения уровней, толщины изоляционных материалов, усилий. В последнем случае используется свойство сегнетоэлектриков, применяемых в качестве диэлектрика в преобразователе, изменять диэлектрическую проницаемость под действием сжимающей силы. Их применяют только для измерения сравнительно больших усилий. Достоинства емкостных преобразователей: высокая чувствительность, простота конструкции, малая инерционность. Наряду с этим емкостным преобразователям присущи и недостатки: 1) большое внутреннее сопротивление, что вызывает необходимость производить питание током высокой частоты; 2) необходимость тщательной экранировки для уменьшения влияния внешних электрических полей и паразитных емкостей.
1.2.4 Пьезоэлектрические преобразователи
Пьезоэлектрические преобразователи - преобразователи генераторного типа. Принцип действия их основан на явлении пьезоэлектричества, характерного для определенного класса кристаллов, не имеющих центра симметрии. Пьезоэлектрические кристаллы обладают прямым пьезоэффектом, заключающимся в появлении поляризации при действии давления, и обратным, заключающимся в том, что кристаллы деформируются в электрическом поле.
На использовании прямого пьезоэффекта строятся преобразователи усилий, ускорений, давлений; обратного - вибраторы, ультразвуковые излучатели и другие устройства. В пьезоэлектрических трансформаторах и преобразователях на их основе используется совместное действие прямого и обратного пьезоэффектов. В настоящее время получено большое число пьезоэлектрических материалов, которые подразделяют на две основные группы: пьезоэлектрические монокристаллы и поликристаллические материалы или пьезокерамика. Среди монокристаллических пьезоэлектриков особое место занимает кварц. Он обладает высокими значениями добротности и стабильности характеристик, Недостаток кварца — низкое значение диэлектрической проницаемости и коэффициента электромеханической связи, что ограничивает его применение в пьезоэлектрических преобразователях некоторых типов. В последнее время широкое применение находят искусственно выращиваемые монокристаллы ниобита лития, германата висмута и силиката висмута, которые имеют более высокие значения коэффициента электромеханической связи и диэлектрической проницаемости по сравнению с кварцем. Кроме того, ниобат лития обладает очень высокой температурой Кюри, а германосилиниты не имеют температуры фазового перехода, поэтому они успешно используются в условиях высоких температур.