Контрольная работа: Классический метод наименьших квадратов

Метод наименьших квадратов (МНК) – один из наиболее широко используемых методов при решении многих задач восстановления регрессионных зависимостей[1] . Впервые МНК был использован Лежандром в 1806 г. для решения задач небесной механики на основе экспериментальных данных астрономических наблюдений. В 1809 г. Гаусс изложил статистическую интерпретацию МНК и тем самым дал начало широкого применения статистических методов при решении задач восстановления регрессионных зависимостей. Строгое математическое обоснование и установление границ содержательной применимости метода наименьших квадратов даны А.А. Марковым и А.Н. Колмогоровым. Ныне способ представляет собой один из важнейших разделов математической статистики и широко используется для статистических выводов в различных областях науки и техники.

Приведу краткое описание данного метода. Метод наименьших квадратов — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. Применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. В настоящее время широко применяется при обработке количественных результатов естественнонаучных опытов, технических данных, астрономических и геодезических наблюдений и измерений.

Можно выделить следующие достоинства метода:

а) расчеты сводятся к механической процедуре нахождения коэффициентов;

б) доступность полученных математических выводов.

Основным недостатком МНК является чувствительность оценок к резким выбросам, которые встречаются в исходных данных.

Рассмотрю применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии. Пусть подобрана эмпирическая линия, по виду которой можно судить о том, что связь между независимой переменной и зависимой переменной линейна и описывается равенством:

(1)

Необходимо найти такие значения параметров и , которые бы доставляли минимум функции (1), т. е. минимизировали бы сумму квадратов отклонений наблюдаемых значений результативного признака от теоретических значений (значений, рассчитанных на основании уравнения регрессии):

(2)

При минимизации функции (1) неизвестными являются значения коэффициентов регрессии и Значения зависимой и независимой переменных известны из наблюдений.

Для того чтобы найти минимум функции двух переменных, нужно вычислить частные производные этой функции по каждой из оцениваемых параметров и приравнять их к нулю. В результате получаем стационарную систему уравнений для функции (2):

регрессивный оценка обработка результат

Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему:

Эта система нормальных уравнений относительно коэффициентов и для зависимости

Решением системы нормальных уравнений являются оценки неизвестных параметров уравнения регрессии и :

Где - среднее значение зависимого признака;

- среднее значение независимого признака;

- среднее арифметическое значение произведения зависимого и независимого признаков;

- дисперсия независимого признака;

- ковариация между зависимым и независимым признаками.

Рассмотрим применение МНК на конкретном примере.

Имеются данные о цене на нефть (долларов за баррель) и индексе акций нефтяной компании (в процентных пунктах). Требуется найти эмпирическую формулу, отражающую связь между ценой на нефть и индексом акций нефтяной компании исходя из предположения, что связь между указанными переменными линейна и описывается функцией вида

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 187
Бесплатно скачать Контрольная работа: Классический метод наименьших квадратов