Контрольная работа: Клетка: структура, рост. Ферменты
Понять, каким образом устроены клетки и как они работают, можно, только узнав подробнее о некоторых функциях белков.
3. Рост и биосинтез
Одно из самых очевидных свойств живого организма – способность к росту. Рост любого организма, например человека, является результатом двух процессов: роста клеток и их деления. Человек, как и многие другие виды организмов, растет только до известного предела, по достижении которого размеры остаются более или менее неизменными. Однако все наши ткани постоянно обновляются, некоторые даже с очень большой скоростью; отдельные клетки организма также постоянно растут, на смену старым приходят новые. Очевидно, что организм растет за счет поступления питательных веществ, из которых он создает свои структуры. Как давно было известно, «человек есть то, что он ест». Часть молекул, поступающих в виде пищи, мы преобразуем в строительные вещества для наших клеток, а другие молекулы образуют отходы, такие как углекислый газ, вода и мочевина. Фотосинтезирующие организмы (зеленые растения) в свою очередь этими «отходами» питаются, производя из них строительные вещества для своих клеток. Так или иначе, атомы из внешней среды становятся атомами растущего организма.
Рост – это химический процесс. При взаимодействии молекул одни связи атомов рвутся, а другие образуются. Происходят химические реакции, во время которых порядок расположения атомов меняется. Например, молекулы кислорода, содержащиеся в воздухе, при нагревании сталкиваются с атомами углерода в куске угля; объединяясь, они образуют углекислый газ (СO2 ). Это происходит всякий раз, когда уголь горит; при этом выделяется некоторое количество тепла, так как для образования новых связей между атомами угля и кислорода требуется меньше энергии, чем для поддержания их старых связей. Молекулы углекислого газа в свою очередь могут вступать в реакцию с молекулами воды, образуя угольную кислоту: Н2 O + СO2 -> Н2 СO3 .
От подобных реакций и зависит жизнь, поскольку каждая клетка должна вбирать в себя атомы и молекулы из окружающей среды и преобразовывать их в необходимые для своего существования материалы, извлекая из них энергию. Например, в нашей крови всегда должна присутствовать глюкоза, потому что из этого сахара наши клетки черпают энергию; кроме того, они растут за счет получаемых из глюкозы атомов углерода, водорода и кислорода, объединяя их в сложные белки и другие макромолекулы.
Процесс, благодаря которому организм производит необходимые ему вещества, происходит внутри клеток и называется биосинтезом. Представьте, что клетка – это завод, который выпускает не машины и телевизоры, а такие же клетки. На заводе продукцию собирают на конвейере, или сборочной линии. Сборка начинается с основной части, к которой первый работник добавляет некую небольшую деталь. Следующий за ним работник добавляет другую деталь и так далее, пока вся конструкция не окажется готовой. Сложная продукция, например автомобиль, собирается в нескольких цехах, на разных сборочных линиях; на последнем этапе готовые части автомобиля собирают в единое целое.
Приблизительно так же строит себя живой организм. Совокупность всех химических изменений называется метаболизмом. Отдельная сборочная линия называется путем метаболизма, а молекулы, преобразуемые в ходе процесса, – метаболитами. На каждом пути к молекулам добавляются атомы, или они лишаются атомов, пока не получится конечный продукт. Метаболический путь может представлять собой последовательность реакций, например: 1) от атомов углерода в молекуле отделяются два атома водорода; 2) к атомам углерода добавляется молекула воды (Н – к одному атому, ОН – к другому); 3) из группы ОН удаляется атом водорода и атом кислорода оказывается связанным с атомом углерода двойной связью; 4) к другому атому углерода добавляется группа NH2 . Все изменения проходят отдельными мелкими шагами (таково свойство химических реакций); в каждой функционирующей клетке содержатся сотни или даже тысячи различных метаболитов.
Все пути метаболизма нацелены в основном на синтез мономеров и других сравнительно малых молекул клетки. (Некоторые метаболические пути предназначены для разборки молекул пищевых веществ для получения энергии, которая затем используется в биосинтезе и других процессах, но мы пока не будем затрагивать эту тему.) Есть свой путь для каждой из 20 аминокислот, из которых состоят белки; для каждого сахара, из которых состоят полисахариды; для каждого липида и т.д. Все конечные продукты этих путей затем встраиваются в такие сложные структуры, как белки или клеточные мембраны.
4. Ферменты
Линию сборки на заводах обслуживают люди (хотя теперь их все чаще заменяют роботы). Кто же обслуживает пути метаболизма в организме? Каким образом происходят химические реакции, превращающие один метаболит в другой? Иногда для этого ничего дополнительного не требуется. Некоторые химические реакции происходят быстро и сами по себе, едва только необходимые вещества смешиваются между собой; для этого достаточно той энергии, с которой молекулы сталкиваются. Но организмы не могут полагаться на реакции, которые происходят сами по себе. Многие реакции просто не начнутся без дополнительной энергии, и клетки выработали механизм подачи энергии для таких реакций. Кроме того, многие реакции метаболизма происходят настолько медленно, что их обязательно нужно ускорять. Для этого и существуют ферменты. Фермент – это белок, взаимодействующий с некоторой молекулой – субстратом, заставляющий молекулу вступать в определенную химическую реакцию. Фермент может по очереди воздействовать на множество молекул, иногда до нескольких тысяч в секунду.
Каждый метаболит имеет определенную форму. Фермент, который взаимодействует с этим метаболитом, имеет углубление – активный центр; по своей форме углубление комплементарно форме метаболита, то есть соответствует ему, подобно тому как соединяются кусочки головоломки.
Дальнейшие действия зависят от природы фермента. Например, фермент А присоединяет гидроксильную группу к некоему метаболиту; фермент В разделяет этот метаболит на две части, а фермент С удаляет его аминогруппу. Каждый из этих ферментов может участвовать в различных путях метаболизма, ведь многие метаболиты преобразуются в различные конечные продукты.
Ферменты и есть те «работники», которые обслуживают линию сборки. Некоторые пути метаболизма действительно физически похожи на линию сборки, по которой молекулы переходят от одного фермента к другому. Однако многие процессы происходят только потому, что ферменты и субстраты перемешаны внутри небольшого пространства клетки.
На рис. 3.4 показана структура одного из ферментов, в котором цепь аминокислот, образующая его первичную структуру, особым образом сложена и образует активный центр. На этом участке определенные остатки аминокислот расположены так, чтобы их боковые цепи взаимодействовали с атомами субстрата и начинали нужные химические реакции. Фермент и субстрат часто сравнивают с замком и ключом, потому что они подходят друг к другу по форме, но не следует забывать и о том, что в ходе процесса их форма меняется. Ферменты – настолько прекрасные катализаторы, что могут ускорять реакции в тысячи раз, и отдельная молекула фермента может за секунду обработать несколько тысяч молекул субстрата. Важно, что клетка содержит множество молекул каждого вида метаболита, которые постоянно преобразуются в молекулы другого метаболита. Поэтому говорят, что в клетке содержится определенная концентрация того или иного вещества.
Рис. 3.4. Структура фермента карбоксипептидазы
На рисунке показано, как аминокислоты (обозначенные буквенными сокращениями с порядковыми номерами) образуют активный центр именно той формы, которая необходима для проведения определенной химической реакции. Этот пищеварительный фермент расщепляет белковые молекулы пищи. В реакции участвует ион цинка (Zn). Поперечными черточками обозначены взаимодействия атомов и молекул
Некоторые ферменты постоянно добавляют новые молекулы, а другие ферменты удаляют молекулы и посылают их по разным путям метаболизма.
Другие ферменты, или ферментообразные белки, транспортируют молекулы через клеточные мембраны. Мембраны представляют собой тонкий слой липидов и белков (рис. 3.5а ), практически непроницаемый для большинства мелких молекул и ионов, однако транспортные белки могут доставлять молекулы внутрь клетки или выводить их наружу, а также перемещать их между разными отделами клетки. На рис. 3.5б показано, как может действовать один из видов транспортных белков. Белок, расположенный в липидном слое, образует канал. Внутри этого канала имеются участки определенной формы, которые, как и активный центр, могут присоединять к себе молекулы исключительно специфической формы. Когда молекула заходит в канал с одной стороны мембраны и присоединяется к активному участку, белок сокращается и выталкивает молекулу через канал с другой стороны мембраны.
Рис. 3.5: а – клеточная мембрана представляет собой тонкий двойной слой молекул липидов с вкраплениями разного рода белков
Большинство молекул, неспособных растворяться в жире, не может пройти через этот липидный слой; б – через транспортные белки проходит узкий сквозной канал. Отдельные мелкие молекулы, или ионы, с одной стороны мембраны присоединяются к участкам этого канала, после чего белок меняет форму и выпускает эти молекулы с другой стороны мембраны
Некоторые транспортные белки используют энергию для того, чтобы накапливать одни виды молекул внутри клетки и выводить другие наружу, регулируя таким образом состав внутриклеточной жидкости.
5. Синтез полимеров
При первичных метаболических процессах синтезируются все аминокислоты, сахара, липиды и другие небольшие молекулы клетки, которые идут на образование таких макромолекул, как белки и полисахариды. После этого синтезировать простой полимер вроде целлюлозы не так уж сложно. Молекула целлюлозы состоит из множества молекул глюкозы, и один из ферментов соединяет их в одну большую цепь.
Синтез белков более сложный. Белки состоят из 20 аминокислот, которые могут соединяться в любом количестве и в любом порядке. Для каждого белка характерна определенная последовательность аминокислот. Любая клетка, например костного мозга, синтезирующая гемоглобин, должна получить «инструкции», в какой последовательности следует соединять аминокислоты. Другими словами, ей необходима информация. Именно благодаря информации мы делаем правильный выбор из множества возможных вариантов. Если нужно набрать телефонный номер друга или узнать высоту Эйфелевой башни, необходимо узнать верное число из всех возможных чисел. Точно так же информация о структуре белка определяет последовательность его аминокислот, например: Ser–Gly–Ala–Ala–Val – Glu-His-Val – … и т.д. Отсюда следует вывод, что в организме должны быть какие-то носители информации, причем в молекулярном виде. Если в организме человека производится около 50 тысяч видов белков, то в клетках человека должна находиться и «инструкция» по сборке этих белков.
Понятно, что этот информационный носитель и является наследственным материалом, так как именно его структура определяет все параметры организма. Каждый организм получает «инструкции» от своих родителей. Каждое поколение передает следующему «инструкции» по сборке специфических белков, а уже от них зависит и внешний вид потомства (окраска волос, рост, форма мочек ушей).
Наследственная информация определяет структуру всех белков организма.
Не будем забегать вперед и объяснять, каким образом передается эта информация и как устроены ее носители. Этому посвящена вся наша книга. Правда, в наши дни каждый знает, что наследственная информация заключена в ДНК – в молекуле дезоксирибонуклеиновой кислоты. Дезоксирибонуклеиновые кислоты – это еще один вид полимеров, отличающийся от белков и полисахаридов, и мы подробнее опишем их в гл. 7. Пока важно знать, что ДНК состоит из четырех видов мономеров, которые могут располагаться в любой последовательности. Эта последовательность передает информацию, необходимую для строительства белков. В конечном счете мы увидим, что ген – это отрезок ДНК, ответственный за производство отдельного вида белка. Кроме того, молекулы ДНК не только переносят информацию, но и воспроизводят себя. Таким образом, копии молекул ДНК передаются каждой новой клетке и последующим поколениям организмов. Это положение u1080 и составляет основу современного учения о наследственности.
Клетки как фабрики по самовоспроизводству и самообновлению
Заключение
Постараемся еще раз представить, как работает организм. Из окружающей среды он получает вещество-сырье и по различным путям метаболизма превращает его в молекулы своей структуры – делает из первичных продуктов мономеры, а затем и полимеры. Но что представляют собой полимеры? В большинстве случаев это те же ферменты, с помощью которых организм производит мономеры, а затем и полимеры. Идея ясна: организм состоит из структур, которые производят сами себя. Белки получают информацию о своем производстве от молекул нуклеиновых кислот, в основн?