Контрольная работа: Компрессорные и насосные установки
Для каждого типа вентилятора характерно определенное значение коэффициента быстроходности:
Центробежные высокого давления – 10–30,
Центробежные низкого и среднего давления с лопатками:
отогнутыми вперед – 30–60
отогнутыми назад – 50–80
Центробежные двустороннего всасывания – 80–120.
Конструкция вентилятора определяется его аэродинамической схемой, под которой понимается схематический чертеж его проточной части с указанием основных размеров в долях наружного диаметра колеса.
Конструктивная форма и размеры вентилятора определяются его подачей, давлением и частотой вращения.
Формы рабочих колес вентиляторов даны на рис. 2.
Рис. 2 – Формы рабочих колес центробежных вентиляторов
а – барабанная; б – кольцевая, в, г – с коническими покрывающими дисками;
д, е – соответственно однодисковых и бездисковых
Формы, показанные: - на рис. 2а, б, свойственны вентиляторам низкого давления с лопатками, загнутыми вперед; - на рис. 2б–г, характерны для вентиляторов низкого, среднего и высокого давлений с лопатками, загнутыми назад;
- на рис. 2г, применяется для колес большой подачи и находит применение, в частности, для дутьевых вентиляторов и дымососов ТЭС.
Открытые однодисковые и бездисковые колеса форм (рис. 2д, е) применяются в пылевых вентиляторах, служащих для подачи смесей газов с твердыми частицами, например в системах пылеприготовления ТЭС.
В вентиляторах применяются все три типа лопастей.
По назначению вентиляторы подразделяются на следующие группы: вентиляторы общего назначения (Ц); - вентиляторы дутьевые (БД); - дымососы (Д); - вентиляторы горячего дутья (ВГД); - вентиляторы мельничные (ВМ); - вентиляторы специального назначения.
По направлению вращения рабочего колеса различают вентиляторы правого вращения (колесо вращается по направлению движения часовой стрелки, если смотреть со стороны привода) и левого вращения. По направлению выхода газа вентиляторы изготовляются с различными положениями корпуса.
Вентиляторы общего назначения по полному давлению, создаваемому при номинальном режиме, подразделяются на вентиляторы низкого (до 1 кПа), среднего (от 1 до 3 кПа) и высокого (свыше 3 кПа) давления.
К вентиляторам низкого давления относятся вентиляторы средней и большой быстроходности. Рабочие колеса этих вентиляторов имеют широкие листовые лопатки. Окружная скорость вращения колес составляет менее 50 м/с.
Вентиляторы низкого давления используются в вентиляционных системах.
Вентиляторы среднего давления имеют окружную скорость до 80 м/с, лопатки этих вентиляторов выполняются как загнутыми вперед, так и назад и применяются как в вентиляционных, так и технологических установках различного назначения.
Вентиляторы высокого давления имеют окружную скорость свыше 80 м/с, лопатки загнуты назад.
Опишите устройство, объясните принцип действия и вычертите схему аммиачного турбокомпрессора АТКА
Агрегат типа АТКА имеет привод от синхронного или асинхронного электродвигателя через мультипликатор, двухэтажную компоновку. Компрессор, редуктор и электродвигатель устанавливаются на отметке +4,8 м. Работает установка следующим образом. Парообразный аммиак засасывается в первую секцию компрессора АТКА-545, где он сжимается до промежуточного давления. Сжатые пары поступают в промежуточный холодильник, где частично охлаждаются. Затем в трубопровод по ходу газа впрыскивается жидкий аммиак, который, попадая в газовый поток низкого давления, испаряется и тем самым охлаждает газообразный аммиак. Далее охлажденный аммиак проходит отделитель жидкости и всасывается во вторую секцию 10 компрессора, где сжимается до давления конденсации. Из второй секции компрессора сжатые пары поступают последовательно в конденсатор, ресивер, промежуточный сосуд и испаритель (на схеме не показано). Основные сборочные единицы аммиачных агрегатов типа АТКА унифицированы между собой и с рядом сборочных единиц других турбоагрегатов. Корпус турбокомпрессора отлит из чугуна. Средняя часть корпуса выполнена в виде цилиндра с продольными и кольцевыми ребрами жесткости. Корпус имеет горизонтальный разъем. Верхняя и нижняя половины корпуса соединяются стяжными шпильками, установленными во фланце нижней половины. Точность взаимного положения верхней и нижней половин корпуса фиксируется двумя коническими штифтами с резьбовым хвостовиком, облегчающим выемку штифтов.
1 - картер; 2 - предохранительный и перепускной (байпасный) вентиль ступени низкого давления; 3 - манометрический пульт; 4 - предохранительный и байпасный вентиль ступени высокого давления; 5 - корпус сальника (передняя крышка); 6 - передний коренной подшипник; 7 - вентиль для регулирования давления масла;8 - сальник; 9 - приводная муфта; 10 - маховик; 11 - поплавковый регулирующей вентиль обратной подачи масла из нагнетательного пространства ступени высокого давления; 12 - коленчатый вал; 13 - противовес; 14 и 16 - промежуточные опоры вала; 15 - шатун; 17 - охладитель масла; 18 - трубки для подачи масла из нагнетательного пространства низкого давления; 19 - задний коренной подшипник; 20 - щелевой фильтр; 21 - патрубок для выпуска масляных загрязнений; 22- патрубок для спуска масла: 23- патрубок для слива воды; 24 - привод масляного насоса; 25-масляный насос; 26 - задняя крышка картера; 27 - рубашка для охлаждающей воды; 28 -крышка цилиндра; 29 - нагнетательный клапан; 30 - всасывающий клапан; 31 - уплотнительное кольцо; 32 - поршень; 33 - поршневой палец; 34- маслосъемное кольцо; 35-втулка цилиндра; 36 и 37 - указатели уровня масла; 38 - вентиль для отсоса картера.
Сформулируйте II закон термодинамики. Приведите примеры применения этого закона в технике
Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в то же время эквивалентных формулировок этого закона. - Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких либо других изменений в системе. Это явление называют рассеиванием или дисперсией энергии. - Постулат Кельвина.