Контрольная работа: Квантово-електронні модулі
4.4 Лавинні фотодіоди (APD)
У діодах pin-типу кожен поглинений фотон в ідеалі призводить до утворення однієї електронно-діркової пари, що у свою чергу приводить до порушення струму у виді зсуву одного електрона в зовнішньому контурі. У цьому даний тип фотодіода схожий на СВД. В основі обох лежить співвідношення один до одного між фотонами, носіями заряду і струмом. Продовжуючи порівняння, можна сказати, що лавинний фотодіод схожий на лазер, у якому співвідношення один до одного не виконується. У лазері невелика первісна кількість носіїв призводить до появи великого числа фотонів. У лавинному фотодіоді (APD) декілька падаючих фотонів призводять до появи великого числа носіїв і до істотного струму в зовнішньому контурі.
На рис. 6 представлена структура APD, що відрізняється наявністю дуже сильного електричного поля (область 1) в деякій частині збідненої зони, які наведені на рис. 6. Первісні носії – вільні електрони і дірки, що з'являються після поглинання світла, – під дією цього поля прискорюються, здобуваючи декілька електрон-вольт кінетичної енергії (область 2). При зіткненні швидких носіїв з нейтральними атомами відбувається передача частини кінетичної енергії електронам валентної зони і переміщення цих електронів у зону провідності. У результаті з'являються вільні електрони і дірки. Носії, на виникаючі в такий спосіб відміну від первісних, називаються вторинними.
Даний процес створення вторинних носіїв називається ударною іонізацією. Первісні носії породжують декілька вторинних носіїв, що у свою чергу, прискорившись в електричному полі, породжують нові носії. Процес у цілому називається фотомультиплексією і являє собою деяку форму посилення.
Рисунок 6 – Лавинні фотодіоди
Число електронів, що протікають у зовнішньому контурі в результаті поглинання одного фотона, залежить від APD-фактора мультиплексії. Типове значення фактора мультиплексії знаходиться в діапазоні від декількох десятків до декількох сотень. При значенні фактора мультиплексії 70 у середньому 70 електронів протікають у зовнішньому контурі після поглинання діодом одного фотона. Вираження "у середньому" дуже важливо. Фактор мультиплексії є статистичною величиною, про яку можна говорити тільки в змісті середнього значення. У кожнім конкретному випадку один первинний електрон може породити як більший, так і менший струм у зовнішньому контурі.
Наприклад, у APD з фактором мультиплексів 70 деякий первинний носій може породити як 67 вторинних носіїв, так і 76 вторинних носіїв. Такого роду варіації є причиною виникнення шуму, що лімітує межу чутливості детектора, що працює на основі APD. Більш докладно проблема шумів буде обговорена нижче.
Фактор мультиплексів залежить від прикладеної напруги. Через необхідність сильного прискорення первинних носіїв потрібно додаток достатньо високого (у ряді випадків у декілька сотень вольтів) напруги, що забезпечує появу зони сильного поля. При низьких напругах APD працює подібно діоду pin-типу без посилення.
Існує граничне значення напруги для ініціювання лавинного процесу ударної іонізації. Вище порога по напрузі APD буде генерувати струм без наявності оптичної потужності. Самої напруги при цьому достатньо для ініціювання ударної іонізації.
Достатньо часто APD використовують у режимі, коли прикладена напруга трохи нижче граничної. Тоді навіть незначна оптична потужність призведе до миттєвого реагування і помітного вихідному сигналу. До недоліків APD можна віднести те, що шумовий струм (струм, що виникає в результаті генерації пари носіїв під час відсутності світла) росте при збільшенні прикладеної напруги і, крім того, висока напруга вимагає спеціального високовольтного живлення.