Контрольная работа: Лазерное излучение и его применение
С этого момента началось практическое использование лазерного излучения. В многочисленных практических применениях и приборах лазерный луч можно рассматривать как оптический сигнал с уникальными свойствами. Среди приборов с использованием лазеров следует назвать прежде всего лазерные дальномеры и измерители скорости,, квантовые гироскопы, голографические приборы. Честь изобретения и создания в 1934—1936 гг. первого светодальномера, прибора для измерения расстояния по времени прохождения его световыми волнами, принадлежит акад. А. А. Лебедеву. Появление лазеров позволило создать более помехозащищенные прецизионные системы измерения расстояния. Первым в дальномерах был применен полупроводниковый лазер на арсениде галлия с модулированным излучением.
В 1913 г. французский физик М. Саньяк, проводя опыты с целью проверки гипотезы ньютоновского «эфира», открыл вихревой оптический эффект. Суть его состоит в получении частоты сдвига бегущей интерференционной картины в результате сложения направленных навстречу друг другу излучений от источника, размещенного на вращающемся основании. В 1962 г. А. Розенталь и У. Мапек предложили для измерения скорости вращения Земли использовать датчик угловой скорости, основанный на эффекте Саньяка, с лазером в качестве источника бегущей волны. Это была принципиальная схема квантового гироскопа.
В 1948 г. Д. Габор, занимаясь улучшением качества изображения в электронных микроскопах, открыл новый метод восстановления амплитуды и фазы световых волн. Восстановление цветных трехмерных изображений, дающих полное ощущение объемности,— одна из самых ярких и чудесных возможностей голографии. Можно с уверенностью сказать, что свое второе рождение голография получила в 1962—1963 гг., когда и Ю. Н. Денисюк (СССР), и Э. Лейт, Ю. Упатниекс (США) применили для нее лазеры и методы лазерной техники.
Современный этап в развитии квантовой электроники и лазерной техники характеризуется внедрением лазерной технологии в промышленное производство, исследованиями лазерного термоядерного синтеза и разработкой устройств когерентной и интегральной оптики. Интегрально-оптические устройства генерации, распространения, усиления, преобразования и детектирования лазерного излучения в тонкопленочных волноводных структурах — реальность сегодняшнего дня.
Квантовые приборы, устройства и системы в основном можно классифицировать следующим образом:
квантовые стандарты длины, частоты и времени;
квантовые усилители оптического (лазерные усилители) и СВЧ-диапазона длин волн (молекулярные, парамагнитные и т. д.);
лазеры;
преобразователи частоты лазерного излучения;
лазерные модуляционные устройства;
лазерные системы (лидары, гирометры, лазерные доплеровские измерители угловой скорости, системы оптической связи, вычислители и т. д.); лазерные технологические методы и оборудование для обработки материалов, запись и отображение информации, лазерные интегрально-оптические устройства и т. д.
Наиболее обширным классом квантовых приборов являются лазеры, которые в основном классифицируют по трем признакам: режиму работы, типу активной среды и способу накачки.
По режиму работы лазеры делят на генераторы непрерывного излучения (одно-, многомодовые и одночастотные) и лазеры импульсного излучения (режимы свободной генерации, модуляции добротности резонатора и моноимпульсный).
В качестве активных элементов для лазеров в настоящее время используют множество веществ. По активной среде лазеры разделяются на четыре группы: твердотельные лазеры (на активированных стеклах, ионных кристаллах, флюоритах, активированных редкоземельными элементами), газовые лазеры (атомарные, молекулярные, газодинамические, ионные, на парах металлов, химические, плазменные и т. д.), жидкостные лазеры (на растворе неорганических соединений, органических соединений), полупроводниковые лазеры (инжекционные, гетероструктурные, с распределенной обратной связью и т. д.).
Для создания инверсии населенностей в активной среде применяют различные методы возбуждения (накачки). По этому признаку лазеры разделяются на лазеры с оптической накачкой, лазеры с химической накачкой, газоразрядные лазеры, лазеры с электронной накачкой, накачкой рентгеновскими лучами, плазменным шнуром, ядерной накачкой т. д.
На сегодняшний день лазеры являются неотъемлемой частью нашей жизни. Вот небольшой пример применения лазеров.
По данным фирмы Gartner Dataquest в апреле 2002 года был продан миллиардный персональный компьютер (ПК) и уже в 2007 году была пройдена вторая миллиардная отметка. Таким образом, если продажа первого миллиарда ПК заняла 21 год, то второго – всего 5 и, судя по темпам роста развивающихся рынков, их потребление нарастает. Соответственно, увеличивается и производство ПК, делая их одним из самых продаваемых и доходных в мире высокотехнологических продуктов. Очевидно, что с точно такой же, а может быть и несколько большей, скоростью растет и потребление деталей и элементов ПК.
Современный компьютер, его технические параметры определяются в первую очередь возможностями его электронных систем. В состав каждого современного компьютера входит несколько электронных интегральных микросхем, которые в современном исполнении чаще всего представляют собой не что иное как полупроводниковый кристалл (например, кремния, германия, арсенида галлия) или пленку, в которых выполнены все элементы и межэлементные соединения этих схем. От качества обработки полупроводниковых подложек и от точности изготовления микроэлементов зависят технические параметры ПК, включая их быстродействие, а от производительности технологии – конкурентоспособность производителя.
Уже много лет при изготовлении микросхем используются, в основном, литографические процессы. Наиболее известные из них – электронно-лучевая литография и фотолитография. Для изделий сложной структуры с элементами очень малого размера (в основном, в микроэлектронике) сегодня основным методом является фотолитография (ФОТОЛИТОГРАФИЯ - способ формирования рельефного покрытия заданной конфигурации с помощью лазера).
Так же практически в каждом компьютере имеется дисковод DVD-ROM/R/RW, DVD-RAM, который предназначен для считывания или записи данных с CD/DVD накопителей. Данные с диска читаются при помощи лазерного луча с длиной волны 780 нм.
1.Свойства лазерного излучения.
Свет - электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Под светом понимают не только видимый свет (с длиной волныλ ≈ 380—760 нм), но и примыкающие к нему широкие области спектра.
В физике рассматривается либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов: частиц, обладающих определённой энергией и нулевой массой покоя.
Характеристики света: цвет, определяемый длиной волны; яркость — поток, посылаемый в данном направлении единицей видимой поверхности в единичном телесном угле; освещённость — физическая величина, численно равная световому потоку, падающему на единицу поверхности; световая отдача (для источников света).
Излучение обычных источников света происходит за счет электронных переходов в атомах, молекулах и комплексных средах, например в твердых телах, или за счет вращательно-колебательных переходов в сложных молекулах (углеводороды, красители).
Излучение лазера отличается от излучения обычных источников света следующими характеристиками:
высокой спектральной плотностью энергии;
монохроматичностью;
высокой временной и пространственной когерентностью;