Контрольная работа: Логика высказываний

(р ≡ q) ≡ (р → q) Ù (q→р) (10)

р → q ≡`p Ú q (11)

(р ≡ q) ≡ (`p Ú q) Ù (`qÚр) (12)

(р ≡ q) ≡ (p Ù q) Ú (`рÙ`q) (13)

_____

(р → q) ≡ р Ù`q (14)

р Ù1 ≡ р (15)

р Ù0 ≡ 0 (16)

р Ú0 ≡ р (17)

рÚ 1 ≡ 1 (18)

р Ùq ≡`р Ú`q (19)

р Ú q ≡`рÙ`q (20)


Итак, подобно тому, как в алгебре мы имеем возможность преобразовывать, одно выражение в другое, с какой-то точки зрения более простое (скажем, приводить алгебраическое выражение к удобному для логарифмирования виду, заменять таблицу, задающую определитель, числом и т.д.), мы можем преобразовать составные высказывания. Важное значение в алгебре высказываний имеет преобразование любого составного высказывания к конъюнктивной нормальной форме. Эта нормальная форма состоит из конъюнкции дизъюнкций, где каждый дизъюнктивный член является либо элементарным высказыванием, либо его отрицанием.

На основании установленных эквивалентностей вводим следующие правила:

а1) Со знаками Ú и Ù можно оперировать как в алгебре, пользуясь ассоциативным, коммутативным и дистрибутивным законами;

а2) `р можно заменить р;

а3) р Ùq можно заменить выражением`р Ú`q, а р Ú q - выражением`рÙ`q ;

а4) р → q можно заменить выражением `p Ú q, а р ≡ q – выражением (`p Ú q) Ù(`qÚр).

Например, привести к конъюнктивной нормальной форме формулу:

((р Ú q) Ù`q ) Ú (rÙq).

Последовательным применением правила а3) получаем :

((р Ú q) Ù`q ) Ú (rÙq) ≡((р Ú q) Ù`q ) Ù (rÙq) ≡((р Ú q) Ú`q ) Ù (`rÚ`q) ≡

≡ ((`рÙ`q) Ú`q ) Ù (`rÚ`q).

Применяя к последней формуле закон дистрибутивности, получаем формулу:

(`р Ú` q )Ù( qÙ`q) Ù (`rÚ`q).

Наконец, применяя правило а2) получаем конъюнктивную нормальную форму:

(`р Úq )Ù( qÚ`q) Ù (`rÚ`q).

Очевидно, что эта форма определяется не однозначно. Так, используя то, что qÚ`q ≡ 1 и (15), получаем другую конъюнктивную нормальную форму первоначальной формулы: (`pÚq) Ù(`rÚ`q)

Запишем обобщения законов поглощения (7):

К-во Просмотров: 340
Бесплатно скачать Контрольная работа: Логика высказываний