Контрольная работа: Магниторезистивный эффект
которая приводит к выражению для тока jx
не зависящему от магнитного поля, то есть к отсутствию магнетосопротивления.
Обратная матрица к матрице проводимости называется тензором сопротивлений
и в общем случае для обращения нужно использовать формулы
где вместо компонент тензора проводимости следует использовать компоненты в уравнении (3.3).
Для двумерного электронного газа используются формулы (3.3), где изменён знак на противоположный перед подвижностью в тензоре проводимости (или просто транспонированная матрица проводимости).
Геометрическое магнетосопротивление
Рис. 1. Распределение потенциала (красный цвет соответствует максимуму, а синий — минимуму) в однородном квадратном образце с двумерным дырочным газом в поперечном магнитном поле (μB=1). Белыми линиями показаны искривлённые в магнитном поле линии тока.
Рис. 2. Распределение потенциала в однородном прямоугольном образце с двумерным дырочным газом в поперечном магнитном поле (μB=1). Белыми линиями показаны линии тока, которые в середине образца практически параллельны боковым сторонам.
Если рассмотреть прямоугольный образец (длиной L и шириной d) с двумерным электронным газом (магнитное поле направлено перпендикулярно плоскости образца), то в образце наблюдается магнитосопротивление связанное с перераспределением токов в магнитном поле:
где
Отрицательное магнетосопротивление
Среди эффектов, которые приводят к магнетосопротивлению можно выделить слабую локализацию, как наиболее известный эффект приводящий к отрицательному магнетосопротивлению, то есть наблюдается увеличение проводимости при приложении магнитного поля. Это одноэлектронный квантовый интерфененционный эффект приводящий к дополнительному рассеянию носителей, что уменьшает проводимость.
Вывод
В модели Друде уравнение для дрейфовой скорости vd частицы (для простоты рассмотрим дырку) в электрическом и магнитных полях имеет вид:
где m — эффективная масса дырки, e — элементарный заряд, τ — время релаксации по импульсам (время между столкновениями, когда происходит существенное изменение импульса). Решение этого уравнения можно искать в виде суммы трёх векторов, которые определяют базис трёхмерного пространства.
Здесь ai — искомые коэффициенты. Если подставить это выражение в исходное (2.1) получим
Используя формулу двойного векторного произведения
приведём выражение (2.3) к следующему виду:
собрав коэффициенты при базисных векторах. Приравняв коэффициенты при базисных векторах нулю найдём значения: