Контрольная работа: Математическое моделирование экономических ситуаций
1) Средний размер произведенной продукции на одно предприятие:
(50*28+150*52+250*164+350*108+450*36+550*12)/400=110800/400=
=277 тыс. руб.
Дисперсия объема производства:
=((50-277)²*28+(150-277)²*52+(250-277)²*164+(350-277)²*108+
+(450-277)²*36+(550-277)²*12)/400=4948400/400=12371
Доля предприятий с объемом производства продукции более 400 тыс. руб.:
(36+12)/400= 0,12 или 12%
2) Определить в целом по области с вероятностью 0,954 пределы, в которых можно ожидать:
а) средний объем производства продукции на одно предприятие:
111,225
Величина tопределяется по таблице значений функции Лапласа из равенства
.
Следовательно, в нашем случае последнее равенство принимает вид
Ф(t)=0,954/2=0,477.
Из этого равенства по таблице значений интегральной функции Лапласа находим значение t=2,00.
√n=√400=20
Найдём нижний предел:
277-2*111,225/20=265,8775 тыс. руб.
Найдём верхний предел:
277+2*111,225/20=288,1225 тыс. руб.
Iγ(a)=( 265,8775 ; 288,1225)
б) долю предприятий с объемом производства продукции более 400 тыс. руб.:
Средняя: (450+550)/2=500 тыс. руб.
Найдём нижний предел:
500-2*111,225/20= 488,8775 тыс. руб.