Контрольная работа: Металлы и их сплавы
3. Строим диаграмму состояния.
4.Рассмотрим основные точки диаграммы состояния, для которых характерны строго определённые температуры превращений и концентраций углерода в сплавах. Результаты занесём в таблицу2.
№ | Х(%) | Y(°С) | Точка | Превращения |
1 | 6,67 | 1600 | D | ТочкаD- температура плавления цементита. |
2 | 0 | 1539 | А | 1539°С - температура плавления железа. Углерода нет. Точка А-предельная концентрация углерода в высокотемпературном феррите. |
3 | 0,1 | 1499 | Н | ТочкаН- 0,1%-предельное содержание(растворимость) С в δ-феррите при 1499°С. |
4 | 0,16 | 1499 | J | Точка J- концентрация 0,16% углерода в аустените при перитектической температуре 1499°С. |
5 | 0,51 | 1499 | В | ТочкаВ- 0,51%-концентрация углерода в жидкой фазе, находящейся в равновесии с δ-ферритом и аустенитом при перитектической температуре1499°С . |
6 | 0 | 1392 | N | Углерода нет. ТочкаN- превращение высокотемпературного δ-железа в φ-железо.(Ниже 1392 до 910°С устойчивым является φ-железо. |
7 | 2,14 | 1147 | Е | Точка Е- 2,14%-предельная концентрация углерода в аустените при эвтеклической температуре 1147°С. |
8 | 4,3 | 1147 | С | ТочкаС-концентрация углерода в ледебурите,состоящем изА+Ц1 |
9 | 0 | 911 | G | Углерода нет. ТочкаG- превращение φ-железа в низкотемпературное α-железо. Т.е при температуре ниже 910 устойчиво α-железо |
10. | 0,8 | 727 | S | ТочкаS- концентрация углерода в перлите, состоящем изФ+Ц2 при эвтекоидной температуре 727°С |
11 | 0,02 | 727 | Р | Предельная концентрация углерода в низкотемпературном α-железе. Т.е мах растворимость углерода - 0,02% при 727°С |
Сплавы железа с углеродом при содержании в них 2,14-6,67 % С называют белыми чугунами. 3,7%С находится в интервале 2,14-4,3%.
В интервале точек 1,2 из жидкого расплава выделяются кристаллы аустенита, в инт точек 2-3 при частичном распаде аустенита избыточный углерод образует сетку цементита вторичного; оставшийся аустенит с частью кристаллов Ц2 образует механическую смесь- ледебурит; ниже точки 3 углерод, выделившийся из остатков аустенита образует дополнительное количество цементита, который соединяясь с кристаллами перлита, образует окончательную структуру ледебурита при сохранении в составе чугунов эвтектоида-перлита и сетки цементита вторичного.
3.Дайте определение легированным сталям. Опишите влияние легирующих элементов хрома, никеля, кремния, марганца, титана на свойства легированных сталей. Укажите, что называется нержавеющей сталью. Какой элемент и в каком количестве необходимо ввести в сталь, чтобы она стала корозионностойкой
СТАЛЬ - сплав железа(Fe) (основа) с углеродом(С) и содержащий ряд постоянных или неизбежных примесей которые оказывают влияние на её свойства. По химическому составу различают стали углеродистые и легированные, по назначению - конструкционные, инструментальные, стали с особыми физическими и химическими свойствами (нержавеющая, жаропрочная, электротехническая и др.).
Легирование- (нем . legieren - сплавлять, от лат. ligo - связываю, соединяю), введение в состав металлических сплавов т. н. легирующих элементов (напр., в сталь - Cr, Ni, Mo, W, V, Nb(ниобий), Ti и др.) для придания сплавам определенных физических, химических или механических свойств.
ЛЕГИРОВАННАЯ СТАЛЬ помимо обычных примесей содержит легирующие элементы. Различают низколегированную (суммарное содержание легирующих элементов до 2,5%), среднелегированную (2,5-10%) и высоколегированную (св. 10%) сталь.
Все элементы, вводимые в стали специально или сохранившиеся при её выплавке, можно разбить на 4 группы, что запишем в таблице3.
Таблица3.Примеси в сталях.
№ | Примеси | Химические элементы |
1 | постоянные или обыкновенные примеси: | марганец (Mn), кремний (Si), алюминий (Al), сера(S), фосфора(P). |
2 | Скрытые примеси: | кислород(О2), азот(N2), водород(Н2). |
3 | Случайные примеси: | медь(Cu),ртуть(Hg) олово(Sn)и др. |
4 | Легирующие элементы (от греческого слова сложные) | К ним относятся: хром (Cr), никель (Ni), молибден(Mo), вольфрам(W), V, Nb, Ti и др. Если количество Si и Mn в стали более 0,7-1% их тоже называют легирующими элементами. |
В зависимости от того, какими элементами насыщена сталь, её называют, например, хромистая, хромомарганцовистая и т.д.
Хром( Cr ) - Хорошо растворяется в феррите, упрочняя его, является активным карбидообразователем, что повышает твёрдость и износостойкость сталей; увеличивает их прокаливаемость ( способность воспринимать закалку на большую глубину). Содержание в стали более 12% хрома приводит к увелич. Её коррозионной стойкости и уменьшает окислительные процессы в агрессивных средах. В хромистых сталях образуются специальные хромистые карбиды, состав и структура которых зависит от содержания Cи Cr. При низком содержании С и высоком содержании Cr образуются ферритные стали не претерпевающие полиморфного превращения. Оказывает влияние на структурные превращения в сталях при их термической обработке. Хром (а также Mo,W) наиболее значительно повышает устойчивость аустенита при температурах 450-550, тогда как у углеродистых сталей она при этих температурах наименьшая. Способность легирующих элементов замедлять скорость распада аустенита в районе перлитных превращений и тем самым повышать его устойчивость приводит к понижению критической скорости закалки и увеличению прокаливаемости стали.
Никель( Ni )- активно расширяет гамма- область на диаграмме «железо-легирующие элементы»; хорошо растворяется в феррите, упрочняя его и увеличивая ударную вязкость стали при нормальной и пониженной температуре; увеличивает прокаливаемость стали.Стали с содержанием 7-9% никеля, например 09Х15Н8Ю, 09Х17Н8Ю отличаются повышенной прочностью после закалки и последующего старения при Т=500-750град или обработки холодом при т=-70град. Стали с содержанием 9-15% и 17-18% никеля хорошо обрабатываются давлением и сваркой, обладают высокой прочностью, вязкоупругостью, коррозионной устойчивостью. Содержание 24-26% Ni приводит к потере сталями магнитных свойств; дальнейшее повышение Ni возвращает сталям магнитные свойства.
Совместное использование Cr и Ni даёт возможность получать стали, обладающие повышенной вязкоупругостью, твёрдостью, прокаливаемостью, жаропрочностью, коррозионной стойкостью.
Кремний( Si )-активный раскислитель, при содержании более 0,7%- легирующий элемент. Хорошо растворяется в феррите, упрочняя его; при содержании более 1,5% охрупчает сталь и снижает её вязкоупругие свойства; изменяет электромагнитные характеристики, увеличивает электросопротивление сталей. Кремний, как и хром вводят для улучшения способности стали устойчиво сохранять твёрдость при высоких температурах(красностойкость)Введение кремния в небольших количествах(0,8-1,2%) повышает вязкоупругость и пластичность.
Марганец ( Mn )- являясь раскислителем, устраняет вредное влияние серы, а при содержании в стали более 1% ведёт себя как легирующий элемент; хороший заменитель дорогостоящего Ni; увеличивает устойчивость аустенита и прокаливаемость ; хорошо растворяется в феррите, но при содержании более 1,5% охрупчивает его.
Титан( Ti )-титан, как и ниобий(Nb) добавляются в небольших количествах, являются активными карбидообразователями. Чаще всего исп. Для связывания углерода в хромоникелевых нержавеющих сталях в целях устранения межкристаллитной коррозии и измельчения структуры стальных отливок. Оказывает влияние на структурные превращения в сталях при их термической обработке. Титан (и ванадий) образуют устойчивые карбиды, препятствуют росту зерна аустенита при нагреве стали до 1000-1100, поэтому такие стали имеют мелкое природное зерно и не боятся перегрева при термической обработке.
НЕРЖАВЕЮЩАЯ СТАЛЬ , легированная сталь, устойчивая к коррозии на воздухе, в воде, а также в некоторых агрессивных средах. Наиболее распространены хромоникелевая и хромистая нержавеющая сталь, часто с добавкой Mn, Ti и других элементов. Нержавеющая сталь устойчива против электрохимической коррозии, т.е коррозии, вызванной действием электролитов: кислот, щелочей, солей.
КОРРОЗИОННАЯ СТОЙКОСТЬ , способность материалов сопротивляться коррозии. У металлов и сплавов определяется скоростью коррозии, т. е. массой материала, превращенной в продукты коррозии, с единицы поверхности в единицу времени, либо толщиной разрушенного слоя в мм в год. Повышение коррозионной стойкости достигается легированием, нанесением защитных покрытий, созданием шлифованной и полированной поверхности и т. д. При легировании в сталь вводятся элементы, образующие на поверхности защитные плёнки, прочно связанные с основным металлом и предупреждающие контакт между сталью и наружной агрессивной средой, а также повышающие электрохимический потенциал стали в разных агрессивных средах. КОРРОЗИОННОСТОЙКИЕ МАТЕРИАЛЫ не разрушаются под действием агрессивных сред ( кислот, щелочей, солей, кислорода, влаги) и стойки при одновременном действии коррозионной среды и напряжений растяжения. К коррозионностойким материалам относятся нержавеющие стали, которые применяются в производстве химической аппаратуры, трубопроводов, резервуаров, в судостроении, и мн. др.
Чтобы сталь стала короззионностойкой необходимо оценить среду, для которой она предназначена. Эти стали можно разделить на 2 основных класса: хромистые, имеющие после охлаждения на воздухе ферритную или мартенситную структуру, и хромоникелевые, имеющие аустеническую структуру.
При введении в сталь 12-14% хрома её электрохимический потенциал становится положительным и она приобретает устойчивость против коррозии в атмосфере, морской(пресной) воде, ряде кислот, солей, щелочей.(например стали 12Х13, 30Х13, 12Х17,15Х28 и т.д)
Аустенические нержавеющие стали, обычно легированные хромом и никелем ( или марганцем), после охлаждения до комнатной температуры имеют аустеническую структуру, низкий предел текучести, умеренную прочность, высокую пластичность и хорошую коррозионную стойкость в окислитедьных средах. (например стали 12Х18Н9, 17Х18Н9 содержат 17-18% хрома,8-10% никеля). Хромоникелевые нержавеющие стали дороги. Применяют более дешёвые хромомарганцевоникелевые, в которых часть никеля заменена марганцем(10Х14Г14Н3Т) или азотом в количестве 0,15-0,4% (15Х17АГ14).
Молибден повышает устойчивость против коррозии в органических кислотах, серной кислоте и морской воде(10Х17Н13М2Т).
Низкоуглеродистая высоколегированная аустеническая сталь 06Х23Н28М3Д3Т применяется для сварных конструкций и узлов, стойких против действия горячей( до 80град) серной кислоты содержит до 0,006% с, 22-25%сr,26-29%Ni,0,5-0,9% Ti,2,5-3%Мо,2,5-3,5% Сu. Устойчивость к серной кислоте обеспечивает никель, молибден и медь. Титан уменьшает склонность к интеркристаллитной коррозии.
4. Приведите описание литейных сплавов на основе алюминия: их маркировку, состав, литейные и физико-механические свойства, область применения. Рассмотрите особенности изготовления и термической обработки отливок из алюминиевых сплавов
Все сплавы алюминия можно разделить на 3 группы:
1.деформируемые для прокатки, прессовки, ковки, штамповки и т.д.
2.литейные, предназначенные для фасонного литья
3. сплавы, получаемые методом порошковой металлургии.