Контрольная работа: Методи перетворення комплексного креслення
ЗМІСТ
Вступ.. 2
1.Заміна площин проекцій.. 3
2. Плоскопаралельне переміщення.. 5
3.Обертання навколо ліній рівня.. 7
4. Косокутне допоміжне проектування.. 10
Висновки.. 11
Список літератури.. 12
Вступ
Розділ геометрії, в якому просторові фігури ( оригінали вивчають за допомогою зображень їхніх графічних моделей на площині малюнка називають нарисною геометрією.
Малюнок повинен нести геометричну інформацію про форму та розміри оригіналу, бути наочним, простим і точним. Формоутворюючими елементами простору є основні геометричні фігури – точка, пряма та площина, з яких утворюються складніші фігури. Геометричною фігурою називають будь – яку непусту множину точок, а геометричний простір може складатися з множини точок, прямих чи площин. Основою нарисної геометрії є метод проекцій, який дає можливість одержувати відображення просторових фігур на площині чи поверхні. За цим методом кожній точці тривимірного простору відповідає певна точка двовимірного простору ( площини ). На площині зображують усі фігури, розміщені в просторі. Перетин проектуючого променя з площиною проекцій дає проекцію точки. Проекцією прямої в загальному випадку є пряма, що проходить через точку її перетину з площиною проекцій. Малюнок, що складається з кількох (мінімум двох) зв'язаних між собою проекцій зображуваної фігури називають комплексним малюнком.
1.Заміна площин проекцій
На Мал. 1,а в системі площин проекцій і
зображено точку А. Перпендикулярно до площини
проводять нову вертикальну площину
, на яку ортогонально проектують точку А. Таким чином, замість системи площин проекцій
/
з проекціями точки
одержують систему
/
з проекціями точки
. При такій заміні відстань від старої проекції до старої осі дорівнює відстані від нової проекції до нової осі. На комплексному рисунку (Мал. 1, б) ці відстані позначено двома рисками. [1] [2]
Мал. 1
На Мал. 2 зображено відрізок прямої загального положення АВ. Щоб одержати його натуральну величину, досить провести нову площину паралельно одній з проекцій ( на рисунку вісь паралельна горизонтальній проекції прямої). Відклавши від нової осі відповідні відстані від фронтальних проекцій точок до старої осі, одержують натуральну величину відрізка
.[1]
Мал. 2
Для розв’язання ряду метричних задач пряму необхідно поставити в проектуюче положення. Для цього треба скористатися натуральною величиною відрізка. Якщо провести площину, перпендикулярну до неї ( її слід – вісь ), то відклавши відстань, позначену двома рисками, одержимо проекцію прямої у вигляді точки
.
На Мал. 3 показано визначення відстані між відрізками двох мимобіжних прямих - і
. Для цього подвійною заміною площин проекцій пряму
проектують в точку, а пряма
спроектувалась при цьому у відрізок
. Перпендикуляр, опущений з
на
дає шукану відстань.
Мал. 3
Крім визначення відстані можна тут же визначити дві найближчі точки і
на мимобіжних прямих. Показано визначення точок
і
. А далі в зворотному напрямі можна визначити точки
і
на полях
та
На Мал. 4 показано визначення натуральної величини трикутного відсіку подвійною заміною площин проекцій. Для цього в площині трикутника спочатку проведено горизонталь . Перпендикулярно до горизонтальної проекції горизонталі вибирають вертикальну площину ( її горизонтальний слід -
), При цьому горизонталь спроектувалася в точку
, а весь відсік – у пряму
. Паралельно прямій
проводять слід площини
і визначають натуральну величину трикутного відсіку.[1], [2]
Мал. 4
2. Плоскопаралельне переміщення
Якщо при способі заміни площин проекцій геометричні фігури залишаються на місці, а до них певним чином підбирають площини проекцій, то при способі плоскопаралельного переміщення роблять навпаки: площини проекцій і
залишають незмінними, а геометричні фігури переміщують певним чином. [1], [3]
На Мал. 5а зображено відрізок прямої загального положення . Для визначення натуральної величини відрізка через його кінцеву точку
проводять вертикальну вісь
, навколо якої відрізок
повертають до фронтального положення. Точка
при цьому переміщується по дузі кола, площина якого перпендикулярна до вертикальної осі
, а отже, і горизонтальна. Натуральну величину показано подвійною прямою (
)
Мал. 5
--> ЧИТАТЬ ПОЛНОСТЬЮ <--