Контрольная работа: Методика регрессионного анализа

Проверка коэффициентов уравнения регрессии на статистическую значимость проводиться с помощью t -критерия:


Для значения α = 0,05, получим α/2 = 0,025 и значение t-критерия Стьюдента равно . Поскольку в матрице дисперсий-ковариаций не нулевые только диагональные элементы и равны между собой (), то все доверительные интервалы равны между собой:

Теперь проверим все коэффициенты на статистическую значимость исходя из условия: если – то коэффициент статистически значим, если – то коэффициент статистически не значим.

коэффициент b0 b1 b2 b3 b4 b5 b6 b7
36,542 23,292 13,625 10,458 1,375 2,375 5,208 1,875
Статистически значим + + + + - + + -

Таким образом мы получили, что коэффициенты b 4 и b 7 – статически не значимы, поэтому мы не будем вносить их в нашу модель. И окончательный вид модели будет таким:

Число = 6 – количество эффектов, которые вошли в структуру модели, то есть статистически значимые.

Значения откликов, полученных с помощью последней модели:

Отклик y1 y2 y3 y4 y5 y6 y7 y8
-3.25 38.584 13.584 55.418 2.5 53.834 40.166 91.5
3.25 3.251 3.251 3.249 0.5 0.499 0.501 0.5

Проверка модели на адекватность производиться с использованием F -критерия Фишера:

Где – числа степеней свободы для и :

Просчитаем экспериментальное значение:

По таблицам значения критерия Фишера (приложения 3) для q = 0,05 находим:

Так как выполняется условие значит модель адекватна.

Так как у нас , то нет необходимости определять значимость обратного отношения дисперсий.

Проверка на информативность [1, с. 97-99]

Коэффициент множественной корреляции R определяется по формуле:

Посчитанное значение R = 0,997 которое очень близко к единице.

Гипотезу о значимости множественного коэффициента корреляции проверяют по F -критерию:

Где – суммы квадратов отклонений – связанная с коэффициентом модели и остаточная; – числа степеней свободы для и .

В нашем случае:

К-во Просмотров: 220
Бесплатно скачать Контрольная работа: Методика регрессионного анализа