Контрольная работа: Методика регрессионного анализа

Факторный эксперимент связан с варьированием одновременно всех факторов и проверкой достоверности результатов математико-статистическими методами. Факторы в эксперименте можно варьировать на бесконечном множестве уровней. При планировании эксперимента, чтобы получить результаты эксперимента в виде удобных для анализа полиномов, достаточно изменять факторы на двух, трех или пяти уровнях. Проведение экспериментов с многоуровневыми факторами затруднительно, поэтому они находят ограниченное применение в практике инженерного эксперимента.

Таблица 1

Номер

комбинации

Факторы Произведения факторов

Параметры оптимизации

(экспертная оценка)

Параметр

оптимизации

_ Ф И С
x0 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 y1 y2 y3
1 1 -1 -1 -1 1 1 1 -1 0 0 0 0
2 1 1 -1 -1 -1 -1 1 1 31 28 47 35,3
3 1 -1 1 -1 -1 1 -1 1 12 9 10 10,3
4 1 1 1 -1 1 -1 -1 -1 60 52 64 58,7
5 1 -1 -1 1 1 -1 -1 1 1 3 2 2
6 1 1 -1 1 -1 1 -1 -1 54 59 50 54,3
7 1 -1 1 1 -1 -1 1 -1 41 41 40 40,7
8 1 1 1 1 1 1 1 1 91 92 90 91
Среднее значение 24,8

Модель для ПФЭ типа выглядит следующим образом:


Коэффициенты уравнения регрессии по методу наименьших квадратов в матричной форме определяем следующим образом [1, с. 53-55]:

Выражение - квадратная симметричная матрица – называется матрицей системы нормальных уравнений, или информационной матрицей (матрицей Фишера); – ковариационная матрица, или матрица дисперсий ковариаций.

Ковариация показывает величину статистической взаимосвязи между эффектами модели xi и xj :

Также коэффициенты ковариаций можно определить из ковариационной матрицы:

Из матрицы видно, что коэффициенты ковариаций каждого эффекта с каждым равны нулю, отсюда делаем вывод, что коэффициенты уравнения регрессии не коррелированны между собой.

Проверка многофакторных статистических моделей по основными критериям качества

Проверка на статистическую значимость получаемой математической модели [1, с. 93-94]

Проводиться проверка статистической гипотезы о силе влияния факторов плана эксперимента на фоне случайной изменчивости повторных опытов:

Где – среднее значения результатов опытов в u -той строке матрицы результатов; – среднее значение по всем результатам опытов; - результат в u -той строке l -го повторного опыта; (n – количество повторных опытов (2))

По таблице (приложение 3) определяем 3,73

Поскольку (53,935>3,73), то делаем положительный вывод о целесообразности получения математической модели.

Проверки предпосылок о свойствах случайных ошибок входящие в результаты экспериментов [1, с. 93]

При равномерном дублировании опытов nu = n = const (в нашем случае n = 2). Проверка однородностиряда дисперсий производиться с использованием G -критерия Кохрена:


- вычисляется по формуле:

Число степеней свободы, которыми обладает каждая из дисперсий: n – 1 = 1;

Количество независимых оценок дисперсий: N = 8

По указанным индексам находим значение из таблицы "Критерий Кохрена" (приложение 1)

Так как то делаем вывод, что дисперсии однородны и могут быть усреднены:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 218
Бесплатно скачать Контрольная работа: Методика регрессионного анализа