Контрольная работа: Методы и значение неразрушающего контроля качества продукции

Мет одыизначениенеразрушающего контроля качества продукции

Все основные элементы машин рассчитываются на одинаковый срок службы, по истечении которого наступает их физический износ. На практике часто приходится встречаться с тем, что отдельные части изделий выходят из строя раньше этого срока. Причиной этого, как правило, являются дефекты, не обнаруженные в процессе их изготовления и контроля качества.

Технические устройства – автомобиль, трактор, самолет, телевизионный приемник и другие состоят из отдельных частей. Надежность и долговечность каждой из них определяются прежде всего качеством материала, из которого они изготовлены. Современный уровень техники и технологии, например в металлургии, не позволяет самопроизвольно получать металл желаемого качества, так как сырье часто имеет непостоянные свойства. Руда, скрап, кокс, нерудные присадки не могут обладать строго определенными качествами. Поэтому в процессе плавки берутся пробы, и по результатам их исследования шихта и режимы корректируются.

В целях обеспечения требуемого качества конечного продукта (законченного производством изделия) необходимо вести контроль не только качества материала, но и соблюдения режимов технологических процессов, «контролировать геометрические параметры, качество обработки поверхности деталей и др. Технические измерения, оценка качества обработанной поверхности (овальность, конусность, цилиндричность, шероховатость и др.) несут информацию о внешней стороне дела, Это очень важно, но еще более важно проникнуть в материал, знать его структуру, химический состав, качество и глубину термической обработки. распределение внутренних напряжений, характер и распределение возможных внутренних и поверхностныхметаллургических дефектов. Существуют различные методы контроля, их можно разделить на две большие группы: контроль качества с разрушением и без разрушения материала (заготовки, детали).

Контроль качества с разрушением, который проводится методами химического, спектрального, рентгеноструктурного и металлографического анализа, позволяет обнаружить отклонения от заданных параметров состава и структуры металла, но требует, как правило, взяшя проб, изготовления образцов. Это трудоемкие и дорогостоящие операции. Нередко на них уходит столько же или больше металла, чем на изготовление самой детали. В особо ответственных производствах например при изготовлении летательных аппаратов, помимо образцов изготовляют «свидетели» процесса. Этот технический термин означает, что для изучения контролируемой детали специально изготовляется ее дубликат. Например, чтобы проверить глубину цементированного слоя в шестерне, вытачивают одну шестерню сверх предусмотренного заданием количества или взамен ее вытачивают дополнительную деталь упрощенной формы, скажем, кольцо, которое вместе с партией шестерен загружают в термическую печь. Затем проводят металлографические исследования «свидетеля», но результатам которых судят о качестве цементирования всей партии этих деталей. Большая трудоемкость, затраты металла, топливно-энергетическихресурсов обусловили использование названных разрушающих методов контроля только в виде выборочного контроля качества. Однако в современный период, когда техника становится все более сложной, выборочный контроль ответственных деталей, работающих в тяжелых эксплуатационных условиях, становится недостаточным, он не может гарантировать высокую работоспособность и надежность, Более эффективный контроль дефектов, нарушающих сплошность, однородность макроструктуры металла, отклонений химического состава следует проводить с помощью физических методов неразрушающего контроля-дефектоскопии,основанных на исследовании изменений физических характеристик металла. В соответствии с ГОСТ 18353–73 методы неразрушающего контроля в зависимости от физических явлений, на которых они основаны, подразделяются на 10 основных видов: акустический, капиллярный, магнитный, оптический, радиационным, радиоволновый, тепловой, течеисканием, электрический. электромагнитный (вихревых токов). При использовании не разрушающих методов контроля устанавливаются нормы браковки, в противном случае изделия могут незаслуженно выбраковываться или. наоборот, проникать в эксплуатацию с дефектами, Применять методы неразрушающего контроля необходимо с учетом их возможности, чувствительности, производительности, эффективности.

В контроль без разрушения контролируемого объекта входят: внешний осмотр невооруженным глазом или с помощью оптических приборов; испытание агрегатов и машин на стендах, установках, в приспособлениях для определения степени соответствия фактических рабочих характеристик проектным, выявления причин, породивших отклонения; контроль качества поверхности визуально, с помощью измерительных средств и приборов; контроль формы и геометрических параметров деталей, узлов, агрегатов, изделий в целом путем обмера; определение толщины металлических и неметаллических листов, труб, профилей проката, тонкостенных деталей, металлических и неметаллических покрытий физическими методами контроля: обнаружение несплошности материала деталей и узлов (трещин, раковин, неметаллических включений и т. доопределение структуры металла, его твердости, прочности, электропроводности, коэрцитивной силы, ферромагнитных металлов, правильности выполнения процесса термической обработки сплавов; сортировка сплавов по маркам с помощью физических методов контроля.

Неразрушающий контроль качества весьма эффективен. Он позволяет снижать трудоемкость контрольных операций, резко повышать производительностьтруда контролеров. Так, например, металлографический анализ структуры образца занимает 2–3 ч, автоматические средства контроля (АСК) за 1–2 с выявляют аналогичные дефекты. Применение методов неразрушающего контроля качества дает весомую экономию средств за счет отбраковки недоброкачественного металла, заготовок перед дорогостоящей механической обработкой,

Неразрушающий контроль дает возможность проверить качество деталей до вовлечения их в сборку и тем самым не допустить использования дефектных деталей в конструкциях машин, а следовательно, предотвратить аварии и катастрофы. Данные о дефектах, полученные на ранних стадиях производства, позволяют техническим службам предприятия совершенствовать технологические процессы, улучшать режимы обработки металла в горячем и холодном состоянии. Применяя методы неразрушающего контроля, можно уменьшить вес деталей и всего изделия з целом путем уменьшения коэффициентов запаса прочности.

Замена громоздкого испытательного и вспомогательного оборудования, используемого для разрушающих методов контроля, малогабаритными приборами и АСК экономит производственные площади. Машины, собранные из деталей, прошедших контроль неразрушающими способами, гораздо реже выходят из строя и, соответственно, реже требуют ремонта, замены частей и деталей. Чтобы более наглядно представить себе, какую от этого выгоду получает народное хозяйство, скажем, что себестоимость запасных частей к тракторам составляет 80% стоимости самих тракторов. Если мобилизовать усилия и средства на создание комплекса автоматических средств неразрушающего контроля качества всех материалов, выпускаемых промышленностью, то потенциал металлургической, химической промышленности, машиностроения и приборостроения возрастет. Широкое внедрение во всеобласти промышленности методов и автоматических средств неразрушатощего контроля позволит повысить надежность, долговечность, качество изделий, улучшить использование трудовых, материальных и финансовых ресурсов.


Дефекты металлов, их виды и возможные последствия

Дефекты металла – это такие отклонения от нормального, предусмотренного стандартами качества, которые ухудшают рабочие характеристики металла и приводят к снижению сортности или отбраковке. По ГОСТ 15467–79 дефектом называется каждое отдельное несоответствие продукции установленным требованиям, Термин «дефект» не следует отождествлять с термином «отказ».По ГОСТ 13377–75 отказомназывается событие, заключающееся в нарушении работоспособности изделия вследствие дефекта. Однако появление дефектов не всегда приводит к отказу.

Дефекты в зависимости от причин их появления могут быть конструктивными, производственными (ремонтными), эксплуатационными, Мы ограничимся рассмотрением производственныхдефектов, образующихся в процессе плавления металла, заливки его в изложницы, кристаллизации, охлаждения; изготовления отливок; обработки металлов давлением; в результате термической, химико-термической, механической обработки; в сварных, паяных, клепаных соединениях металлов. Причинами возникновения дефектов являются: несовершенство технологических процессов производства или восстановления деталей, нарушение режимов обработки, неэффективность методов контроля качества, несоблюдение режимов и условий эксплуатации, регламентированных нормативно-технической документацией. Дефекты в полуфабрикатах и готовых изделияхмогут образоваться при хранении, транспортировке вследствие нарушения правил упаковки, укупорки, консервации и т.д.

Дефекты плавления, заливки металла в изложницы, кристаллизации и охлаждения – это зоны ликвации, общее несоответствие заданному химическому составу, усадочные раковины, рыхлость, пористость, газовые раковины, продольные и поперечные горячие и холодные трещины, пузыри, неметаллические включения (земля, шлак) и др. Ликвация – это местная неоднородность химического состава сплава, возникающая при его кристаллизации. В зонеликвации могут быть понижены металлические характеристики металла. Дефектами отливокмогут быть: общее несоответствие заданному химическому составу, ликвация, усадочные и газовые раковины, пористость, неметаллические включения, трещины, коробление. Во многих случаях отливку бракуют из-за незначительного дефекта, расположенного на неответственных поверхностях или в слое металла, который будет снят при механической обработке. При рациональном исправлении дефектов отливок можно добиться сокращения брака на 50–60%, что даст большой экономический эффект. Например, в случае недолива крупной отливки дефектное место можно доработать наваркой или наплавкой жидким металлом. Отливка, имеющая отклонения от требований ГОСТов или ТУ, представляет собой брак.

Дефекты при обработке металлов давлением возникают в процессе прокатки, волочения,прессования, ковки и штамповки металлов в виде усадочных и газовых раковин, рыхлот, ликвации, трещин, расслоений, волосовин, флокенов, неметаллических включений (являются следствием некачественного исходного материала); заусенцев, сдвигов одной части профиля по отношению к другой, рисок от задиров на валках прокатного стана, плен, закатов, зажимов, утонений и разрывов (дефекты производства). Флокены– дефекты внутреннего строения стали в виде серебристо-белых пятен (в изломе) или волосовин (на протравленных шлифах) – встречаются главным образом в катаных или кованых изделиях и обусловлены повышенным содержанием водорода.

Дефекты термической и химико-термической обработки металловпоявляются в результате горячей обработки металлов: крупнозернистая структура, оксидные и сульфидные выделения по границам зерен в стали, вызванные перегревом; крупнозернистая структура иокисление по границам зерен, обусловленные пережогом; термические трещины, обезуглероживание, науглероживание, водородные трещины. Окисление по границам зерен вызывает межкристаллитную коррозию, которая в дальнейшем способствует разрушению металла.

Дефекты механической обработкивозможны в процессе обработки металлов резанием: отделочные микротрещины в поверхностном слое детали, Наклепанном в результате воздействия режущего инструмента; шлифовочные трещины на обрабатываемой поверхности (чаще встречаются на деталях, изготовленных из металлов с высокой твердостью): остаточные растягивающие или сжимающие внутренние напряжения. Они способствуют появлению усталостных трещин и этим представляют большую опасность в процессе эксплуатации изделий.

Дефекты сварки и пайкиметаллов бывают внешними и внутренними. В сварных соединениях к внешним дефектам относят наплывы, подрезы, наружные непровары и несплавления, поверхностные трещины и поры; к внутренним – скрытые трещины и поры, внутренние непровары и несплавления, шлаковые и другие включения. В паяных соединениях внешними дефектами являются наплывы и натеки припоя, неполное заполнение шва припоем; к внутренним – поры, включения флюса, трещины и др.

Дефекты клепки – это зазоры в пакете склепываемых листов, перекос стержня заклепки, недостаточная высота замыкающей головки заклепки, трещины в склепываемых листах, на замыкающих и закладных головках, вмятины, забоины.

По своему характеру дефекты могут быть местными (поры, раковины, трещины, расслоения, закаты и др.); распределенными в ограниченных зонах (ликвационные скопления, зоны неполной закалки, коррозионного поражения, местный наклеп); расположенными по всемуобъему изделия или его поверхности (несоответствие химического состава, структуры, качества механической обработки).

Местныедефекты, локализованные в ограниченном объеме, могут быть точечными, линейными, плоскостными и объемными. По своему расположению они разделяются на наружные (поверхностные,подповерхностные) и внутренние (глубинные).

Не всякий дефект металла является дефектом изделия. Отклонения от установленногокачества металла, которые не существенны для работы данного технического устройства, не должны считаться дня него дефектами. Отклонения от заданного качества, являющиеся дефектами для изделий, работающих в одних условиях (например, усталостные при динамическом нагружении), могут не иметь значения при других условиях работы (например, при статическом нагружении). Допустимые дефектыметалла в зависимости от наз начения изделия должны оговариваться в ГОСТ, ОСТ, СТП, конструкторской документации, в технических условиях.

Для того чтобы представить, какое зло могут принести дефекты металла, рассмотрим несколько примеров. В отличие от обычной коррозии межкристаллитная коррозия проникает внутрьметалла, располагаясь между зернами его структуры. Она поражает детали, паропроводы паровых котлов и химических аппаратов, работающих при высокихтемпературах. Выход из строя паропровода, по которому под давлением в сотни атмосфер идет перегретый пар, может привести к катастрофе на электростанции. При сварке, пайке деталей и узлов в результате нарушения технологических режимов часто получается непровар, непронай и как следствне – отказ изделия или авария. Тяжелым и еще не до конца исследованным дефектом многих материалов и конструкций являютсявнутренние напряжения, которые нередко в статическом положении без приложения нагрузки способны разрушить очень прочные изделия. Обычная коррозия кроме снижения механической прочности и пластичности металлов, увеличения трения между движущимися частями машин, станков, приборов, ухудшения физических характеристик вызывает до 25% прямой потери металла от его ежегодной выплавки.

Высокое качество металлаи изготовляемых из него изделий обеспечивается многими путями, главными из которых являются; постоянное совершенствованиетехнологических процессов, строгое соблюдение режимов плавки, внедрение прогрессивного оборудования, повышение эффективности методов контроля качества металла, активное внедрение комплексной системы управления качеством продукции, постоянное повышение трудовой, производственной и исполнительской дисциплины.

Неразрушающий контроль качества методами дефектоскопии

Дефектоскопия–комплекс методов и средств неразрушающего контроля материалов и изделий с целью обнаружения дефектов, Дефектоскопия включает разработку методов и аппаратуру (дефектоскопы и др.), составление методик контроля, анализ и обработку показаний дефектоскопов. В основе методов дефектоскопии лежит исследование физических свойств материалов при воздействии на них рентгеновских, инфракрасных, ультрафиолетовых лучей, гамма-лучей, радиоволн, ультразвуковых упругих колебаний,магнитного и электрического полей и др.

Дефектоскоп устройство для обнаружения дефектов в изделиях методами неразрушающего контроля. Различают дефектоскопы магнитные, рентгеновские, ультразвуковые, электроиндуктивные и др. Они выполняются в виде переносных, лабораторных приборов или стационарныхустановок. Переносные дефектоскопы обычно имеют простейшие индикаторы для обнаружения дефектов (стрелочный прибор, световой или звуковойсигнализатор и т, Д.); лабораторные дефектоскопы более чувствительны, часто оснащаются осциллоскопическими и цифровыми индикаторами, В стационарных дефектоскопах – наиболее универсальных – предусмотрены самозаписывающие устройства для регистрации показаний и их объективной оценки.

Некоторые дефектоскопы позволяют проверять изделия,движущиеся со значительной скоростью (например, трубы в процессе прокатки), или сами способны двигаться относительно изделия (например, рельсовые дефектоскопы). Существуют дефектоскопы для контроля изделий, нагретых до высокой температуры.

Наиболее простым методом дефектоскопии является визуальный, осуществляемый невооруженным глазом или с помощью оптических приборов (например, лупы). Для осмотра внутренних поверхностей,глубоких полостей и труднодоступных мест применяют специальные трубки с призмами и миниатюрными осветителями (диоптрийные трубки) и телевизионные трубки. Для контроля, например, качества поверхности тонкой проволоки используют лазеры. Визуальная дефектоскопия позволяет обнаружить только поверхностные дефекты (трещины, плены, закаты и др.) в изделиях из металла и внутренние дефекты в изделиях из стекла или прозрачных для видимого света пластмасс, Минимальный размер дефектов, обнаруживаемых невооруженным глазом, составляет 0,1–0,2 мм, а при использовании оптических систем – десятки микрон.

Более широкое распространение получил метод оптического контроля в связи с созданием оптического квантового генератора (ОКГ). С его помощью можно производить контроль геометрических размеров изделий со сложной конфигурацией, несплошностей, неоднородностей, деформаций, вибраций, внутренних напряжений прозрачных объектов, концентраций, чистоты газов и жидкостей, толщины пленочных покрытий, шероховатости поверхности изделий, Первым ОКГ был рубиновый генератор, активным элементом которого являлся цилиндрический стержень из кристалла рубина с внедренными в его решетку ионами хрома. Возбуждение активных частиц в ОКГ осуществлялось воздействием на активный элемент светового излучения высокой интенсивности с помощью газоразрядных ламп-вспышек и ламп непрерывного горения серийного производства (оптическая накачка). Управление излучением частиц (создание обратной связи) производилось с помощью зеркал., одно из которых полупрозрачно на длине волны генерации. В резонаторе (системе из двух зеркал и помещенного между ними активного элемента) устанавливаются стоячие волны. Типы колебаний (или моды) отличаются друг от друга,/

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 213
Бесплатно скачать Контрольная работа: Методы и значение неразрушающего контроля качества продукции