Контрольная работа: Методы решения транспортных задач

1) Выберем переменными задачи x1 – изделий вида А1 ; x2 – изделий вида А2 .

Составим систему ограничений в виде неравенств

Составим целевую функцию z (x) = 25·x1 + 17·x2 → max, т.е. обеспечить максимальную выручку от реализации готовой продукции.

2) Найдем решение сформулированной задачи, используя ее геометрическую интерпретацию. Сначала определим многоугольник решений. Для этого в неравенствах системы ограничений и условиях неотрицательности переменных знаки неравенств заменим на знаки точных равенств и найдем соответствующие прямые

Эти прямые изображены на рис. 1. Пересечение полученных полуплоскостей и определяет многоугольник решений данной задачи.


Рис. 1. Графическое представление математической модели

Как видно из рис. 1, многоугольником решений является пятиугольник ОАВС D . Координаты любой точки, принадлежащей данному пятиугольнику, удовлетворяют данной системе неравенств и условию неотрицательности переменных. Поэтому сформулированная задача будет решена, если мы сможем найти точку, принадлежащую пятиугольнику ОАВС D , в которой функция z принимает максимальное значение. Чтобы найти указанную точку, построим вектор , перпендикулярный прямой 25·x1 + 17·x2 = h , где h – некоторая постоянная такая, что данная прямая имеет общие точки с многоугольником решений.

Перемещая, данную прямую в направлении вектора , видим, что последней общей точкой ее с многоугольником решений задачи служит точка B. Координаты этой точки и определяют план производства продукции, при котором выручка от их реализации будет максимальной.

Находим координаты точки C как координаты точки пересечения прямых 8·x1 + 6·x2 = 848 и 5·x1 + 2·x2 = 432.

Решив эту систему уравнений, получим , . Итак, выручка от реализации будет наибольшей, если в плане по производству содержится выпуск 64 изделий А1 и 56 изделий А2 , и, составляет 25·64 + 17·56 = 2552 ден. ед.

3) Запишем данную задачу в форме основной задачи линейного программирования. Для этого от ограничений-неравенств перейдем к ограничениям-равенствам. Введем три дополнительные переменные, в результате чего ограничения запишутся в виде системы уравнений

Составляем таблицу первой итерации:

Базисные

переменные

25 17 0 0 0

0

0

0

848

532

432

8

3

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 266
Бесплатно скачать Контрольная работа: Методы решения транспортных задач