Контрольная работа: Методы синтеза и оптимизации

Вычислим координаты градиента функции в точке Х0 :

.

Поскольку , то Х0 не является точкой экстремума

2) Переместимся изХ0 вдоль градиента - в новую точкуХ1 по формуле:

т.е. .

Для определения координат точки Х1 нужно выбрать значение шага . Получим :

Из соотношения (,)=0 имеем:

(-3-3)(-3)+(1+)=10+10=0

откуда =


Задание 4

ПРИМЕНЕНИЕ ГРАДИЕНТНЫХ МЕТОДОВ ДЛЯ ОПТИМИЗАЦИИ НА ЭВМ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ОБЪЕКТОВ

Цель задания: приобрести практические навыки разработки алгоритмов и программ оптимизации математических моделей градиентным методом.

Индивидуальное задание

Найдите минимум функции f(x1,х2) методом наискорейшего спуска, выбрав в качестве начальной точки сначала Хо, а затем точку из противоположного квадраниа. Сравните число итераций. Для определения оптимального шага путём одномерной минимизации вдоль антиградиентного направления примите метод дихотомии в программе, предусмотрите отрисовку траектории наискорейшего спуска.

, при Хо(2,4).

Блок-схема алгоритма решения изображена на рисунке 5



Рисунок 5- блок-схема алгоритма решения методом наискорейшего спуска


Результаты работы программы.

Рисунок 6- Решение задачи на ЭВМ и траектория поиска оптимальных значений (при Хо(2,4))

Рисунок 7 Решение задачи на ЭВМ и траектория поиска оптимальных значений (при Хо(-2,-4))

Вывод: Особенностью метода наискорейшего спуска является то, что поиск решения выполняется с оптимальным шагом, который рассчитывается с помощью одномерной минимизации функции. Градиенты в двух соседних точках ортогональны и поэтому траектория к оптимальному решению в виде зигзага с поворотом под прямым углом. При Хо(2,4) количество итераций – 5, а при Хо(-2,-4) количество итераций уменьшилось до 4,а значение целевой функции осталось прежним – F(x)=0,61370564.
Листинг подпрограммы метода.

unitOpt1_4;

interface

К-во Просмотров: 642
Бесплатно скачать Контрольная работа: Методы синтеза и оптимизации