Контрольная работа: Модель парной регрессии


Определим объясненную сумму квадратов отклонений ESS по формуле (8)


ТЕМА 3. Модель множественной регрессии

Задача 13

1. В таблице представлены ряды данных по продовольственным ресурсам (производству и импорту ) и личному потреблению картофеля y (млн. тонн) за 9 лет

Год 1990 1991 1992 1993 1994 1995 1996 1997 1998
30.8 34.3 38.3 37.7 33.8 39.9 38.7 37 31.4
1.1 1.2 0.4 0.2 0.1 0.1 0.1 0.2 0.33
y 15.7 16.7 17.5 18.8 18 18.3 18.5 19.1 18

Рассчитать вариации и попарные ковариации для этих рядов.

2. По данным таблицы построить уравнение регрессии, приняв личное потребление картофеля за зависимую переменную, а производство и импорт - за объясняющие. Рассчитать коэффициенты при объясняющих переменных.

3. Для регрессии, описывающей линейную зависимость потребления картофеля от производства и импорта , определить свободный коэффициент a .

4. Рассчитать значения личного потребления y картофеля, используя полученное в задаче уравнение регрессии.

5. Рассчитать общую, объясненную и необъясненную сумму квадратов отклонений для рассчитанной ранее регрессии для личного потребления y картофеля.

6. Используя полученные в предыдущем пункте TSS и ESS , рассчитать коэффициент детерминации для регрессии по картофелю.


Решение

Определим выборочные средние , и по формуле (1) при числе наблюдений: n =9

млн. т

млн. т

млн. т

Рассчитаем вариации и попарные ковариации для этих рядов. Вариации для рядов объясняющих переменных и можно вычислить по зависимостям (11)

А вариацию зависимой переменной y по зависимости (12)

Попарные ковариации для этих рядов определяются по (13) как

По данным таблицы построим уравнение регрессии

,

Приняв личное потребление фруктов за зависимую переменную, а производство и импорт - за объясняющие, предварительно рассчитав коэффициенты при объясняющих переменных.

Расчет коэффициентов и производим по зависимостям (15) и (16)


Для регрессии, описывающей линейную зависимость потребления фруктов от производства и импорта , определить свободный коэффициент a .

К-во Просмотров: 202
Бесплатно скачать Контрольная работа: Модель парной регрессии