Контрольная работа: Моделирование надежности программного обеспечения
Начальные условия розыгрыша:
Кол-во программ-клиентов: 10, Кол-во программистов: 12, Доля от общей области данных (ООД) в одном запросе клиента: 1E-5, Начальное кол-во ошибок: 250, Коэффициент сложности сервера: 2, Интенсивность потока обращений клиента к серверу: 500 (1/сутки), Интенсивность потока исправления ошибки: 1 (1/сутки), Интенсивность внесения ошибки при исправлении: 0,1 (1/сутки), Шаг итерации: 0,002, Кол-во итераций: 50000, Общее время розыгрыша: 100 (сутки); Число розыгрышей:50
Рис.5 – Значения за 50 розыгрышей
Видно, что программа начнет устойчиво работать как и раньше только на 15 сутки, то есть увеличение количества программистов дает не большой эффект и скорее всего, часть программистов будет простаивать.
Гораздо эффективнее в этой ситуации увеличивать нагрузку при тестировании. Например, как это уже было показано выше, увеличивая количество клиентов.
Увеличивая интенсивность обращения каждого клиента к серверу не дает такого эффекта, т.к. каждый клиент обычно работает в своей узкой части ОД и выбивает ошибки из этой части и остается значительная ОД не проверенная, а значит с ошибками. Вот пример розыгрыша при увеличения интенсивности обращений на порядок с 500 до 2500 в сутки.
Пример:
Начальные условия розыгрыша:
Кол-во программ-клиентов: 10, Кол-во программистов: 3, Доля от общей области данных (ООД) в одном запросе клиента: 1E-5, Начальное кол-во ошибок: 250, Коэффициент сложности сервера: 2, Интенсивность потока обращений клиента к серверу: 2500 (1/сутки), Интенсивность потока исправления ошибки: 1 (1/сутки), Интенсивность внесения ошибки при исправлении: 0,1 (1/сутки), Шаг итерации: 0,0004, Кол-во итераций: 250000, Общее время розыгрыша: 100 (сутки); Число розыгрышей:10
Рис.6 – Число розыгрышей:10
Вот еще пример, когда увеличение количества непрофессиональных программистов может привести к отрицательному результату. В примере показан результат увеличения количества программистов с 3 до 10 , у которых поток ошибок при исправлении равен не 0,3 , а 0,7 . Из рисунка видно, что поток ошибок даже увеличивается, а за 100 дней работы системы количество ошибок практически не уменьшилось.
Начальные условия розыгрыша:
Кол-во программ-клиентов: 10, Кол-во программистов: 10, Доля от общей области данных (ООД) в одном запросе клиента: 1E-5, Начальное кол-во ошибок: 250, Коэффициент сложности сервера: 2, Интенсивность потока обращений клиента к серверу: 250 (1/сутки), Интенсивность потока исправления ошибки: 1 (1/сутки), Интенсивность внесения ошибки при исправлении: 0,7 (1/сутки), Шаг итерации: 0,002, Кол-во итераций: 50000, Общее время розыгрыша: 100 (сутки); Число розыгрышей:30
Рис.7. – Число розыгрышей:30
Данная модель в сочетание с моделью надежности ПО позволяет оценить количество ошибок в программе следующим образом – получить из модели расчетный результат, а затем с помо0ью розыгрыша подобрать начальное количество ошибок в ПО таким, чтобы результаты розыгрыша совпадали с результатом расчета.
Еще эта модель позволяет решать обратную задачу, то есть, зная количество программистов, интенсивность их работы и интенсивность отказов в начале опытной эксплуатации и в конце опытной эксплуатации можно подобрать количество ошибок в программе такое, чтобы оно совпадало с ними.
Заключение
Создана программа для прогнозирования поведения надежности ПО со временем на основе метода Монте-Карло. Программа позволяет, задавая различные начальные условия, наблюдать поведение надежности ПО во времени. Это позволяет оценивать затраты и ресурсы для построения и сопровождения высоконадежного ПО.
Сочетание двух подходов – модели надежности ПО и прогнозирования при помощи метода Монте-Карло – позволяет более точно и более всесторонне оценить характеристики надежности ПО. В частности, это позволяет найти начальное количество ошибок в ПО.