Контрольная работа: Молекулярно-генетический уровень живых структур

1.3 Нуклеиновые кислоты

Организмы содержат еще один тип гигантских макромолекул, называемых рибонуклеиновой и дезоксирибонуклеиновой кислотами, сокращенно РНК и ДНК. Структуры и функции этих молекул коренным образом отличаются от таковых для белков. Молекулы ДНК заключают в себе всю информацию и "правила", необходимые для синтеза совершенно любого биологического материала, включая свое собственное образование, увековечивая тем самым биологические виды.

Фрагменты ДНК, содержащие один остаток сахара, один основания и один или более фосфата, называются нуклеотидами. Они играют очень важную роль в жизни клетки как предшественники ДНК или кофакторы ферментов. Один из этих нуклеотидов, аденозинтрифосфат (АТФ), играет значительную роль в клеточном метаболизме. Эта молекула является "энергетической валютой" всех живых организмов.

Очень важная особенность нуклеиновых кислот состоит в апериодичности строения их гигантских молекул. Множество нуклеотидов четырех типов, представляющих звенья этих молекул, следует в линейной молекуле друг за другом в самых различных сочетаниях, но сочетания эти строго постоянны для каждого рода ДНК или РНК данного организма. Такое чередование нуклеотидов в молекулах нуклеиновых кислот можно сравнить с порядком чередования букв в письменном тексте, где буквы расположены в разной последовательности, но последовательность эта вполне определенна и специфична для слов и предложений, составляющих данный конкретный текст. Именно такая специфичность строения полимерных молекул нуклеиновых кислот определяет возможность хранения в них обширной и сложной генетической информации.

"Алфавит" жизни включает всего четыре молекулы, которые относятся к двум различным классам химических веществ: пуринам и пиримидинам. Два пурина аденин и гуанин и два пиримидина цитозин и тимин - основания, а также существует еще одно основание - урацил, которое входит только в структуру РНК. Принято обозначать основания соответствующими начальными буквами: аденин - А, гуанин - Г, цитозин - Ц, тимин - Т и урацил - У. Подобно этому, матрицы живых организмов состоят из длинной последовательности фосфатных и углеводных молекул, образующих остов, к которому прикреплены четыре основания. ДНК содержит сахар дезоксирибозу, а РНК – некоторый отличный сахар рибозу. РНК имеет тоже четыре типа оснований, из которых три (аденин, гуанин и цитозин) такие же, как в ДНК, а тимин заменен здесь другим пиримидином – урацилом.

На языке ДНК все слова, или кодоны, написаны тремя буквами и они указывают "старт", "остановку" или кодирование одной из 24 аминокислот. полное "предложение", или ген, кодирует специфический белок. Понятия "язык ДНК", или генетический код, очень часто являются синонимами. Например, оба триплета оснований ЦАУ и ЦАЦ кодируют аминокислоту гистидин. Молекула ДНК данного организма является законченной "книгой сказаний" этого организма. Вся древняя история и будущее развитие организма отпечатаны на матрице ДНК.

Если матрица не используется, она должна быть заключена в оболочку для защиты от времени, эрозии и вредного окружения. Организмы совершают это путем обертывания двух идентичных молекул - полинуклеотидных спиралей - вокруг друг друга, так что образуется двойная спираль молекулы ДНК. Все основания, несущие информацию, в целях их лучшей сохранности обращены внутрь двойной спирали. Однако две цепи имеют противоположное направление, так что пиримидины образуют водородные связи с пуринами комплементарного тяжа.

Пространственная конфигурация (конформация) молекул ДНК была установлена в 1953 г. Уотсоном и Криком на основании рентгенографического исследования и биохимических данных. Согласно предложенной ими модели, подтвержденной позже множеством других работ, молекула ДНК состоит из двух нитей, образующих правовидную спираль. Азотистые основания обеих нитей ориентированы в направлении к середине спирали, причем аденин одной нити всегда находится напротив тимина другой нити, а гуанин одной нити – напротив цитозина другой нити. В каждом из этих пар основания соединены друг с другом водородными связями; две такие связи имеются в паре аденин-тимин и три - в паре гуанин-цитозин. Вследствие такой комплементарности азотистых оснований порядок чередования нуклеотидов в обеих нитях ДНК оказывается взаимообусловленным, а обе нити спирали расположены антипараллельно и представляют как бы реплики друг друга.

Комплементарность двух нитей молекулы ДНК приводит к тому, что число пуринов в ней равно числу пиримидинов. Молекулы ДНК бывают либо линейными, либо замкнутыми в кольцо, обычно еще перекрученныое; такие кольцевые молекулы ДНК характерны для хромосом и плазмид бактерий, для ряда ДНК – содержащих вирусов, для митохондрий, пластид, кинетопластов. В редких случаях молекулы ДНК не двунитевые, а однонитевые; подобную структуру имеют ДНК некоторых мелких фагов.

Молекулы разных ДНК сильно различаются своими размерами, но все они очень крупные (макромолекулы) и состоят из огромного числа (тысяч, миллионов или миллиардов) мономеров – нуклеотидов и соответственно этому характеризуются очень большими молекулярными весами. По-видимому, все ДНК являются геномными, т. е. всегда служат хранителями генетической информации и везде, кроме РНК-содержащих вирусов, вся генетическая информация сосредоточена в ДНК и при размножении передается ею следующим поколениям.

Наиболее замечательный факт, обнаруженный в "живых" системах, заключается в том, что генетический код идентичен для трех с половиной миллионов видов известных растений и одного миллиона видов животных.

В отличие от ДНК молекулы РНК, как правило, однонитевые. Построены они аналогично нитям ДНК. Однонитевое строение молекул большинства РНК обусловливает относительную лабильность их конформаций и в растворе они нередко образуют клубообразные структуры. Однако во многих РНК в пределах одной нити встречаются участки с одинаковой, но противоположно ориентированной ("палиндромной") последовательностью комплементарных оснований, что приводит к возникновению "шпилек", хорошо видимых в электронном микроскопе, в которых два комплементарных друг другу участка одной нити сближены и соединены водородными мостиками между парами оснований. Если нить РНК имеет несколько таких комплементарных друг другу участков, то образуется несколько "шпилек" и конфорация молекулы приобретает значительную жесткость, что особенно характерно для так называемых транспортных РНК.

В зависимости от функций, присутствующих молекулам РНК, все РНК могут быть разделены на несколько классов. Из них только РНК, находящиеся в РНК-содержащих вирусах, являются геномными, т.е. хранят и передают следующему поколению соответствующую генетическую информацию. Остальные РНК (рибосомные РНК, матричные РНК, транспортные РНК и др.) выполняют иные функции, главным образом связанные с реализацией генетической информации. Размеры молекул РНК очень различны, но в общем они меньше молекул ДНК. Геномные РНК вирусов относятся к самым крупным.

Кроме перечисленных главных азотистых оснований, в состав некоторых нуклеиновых кислот в небольшом количестве входят еще друге азотистые основания, получившие название минорных. Так, у высших животных и высших растений в ДНК небольшая часть цитозинов заменена 5-метилцитозином, а ДНК ряда фагов весь цитозин заменен 5-оксиметилцитозином. В некоторых типах РНК в незначительном количестве встречаются псевдоуридин, метилгуанин и другие минорные основания.

Различные виды РНК служат посредниками для переноса генетичекой информации с ДНК на белки. Только они находятся в контакте с аминокислотами и белками. Поэтому естественно предположить, что РНК - первая информационная биомолекула, возникшая в предбиологической среде.

1.4 Распределение генов

То, что гены расположены в хромосомах, казалось бы, не соответствует тому факту, что у людей только 23 пары хромосом и вместе с тем тысячи различных признаков, которым должны соответствовать тысячи различных генов. Одних только признаков, сцепленных с Х-хромосомой, несколько сотен, а на самой короткой аутосоме расположены также сотни генов. Как это согласуется с менделеевским законом независимого распределения признаков? Это значит, что закон независимого распределения признаков применим только для генов, расположенных на разных хромосомах; сначала ученым необходимо было определить основные законы и выяснить природу наследственности на примере простейших признаков. На самом деле многие гены расположены на одной и той же хромосоме, поэтому они, как правило, наследуются вместе. Такие гены называются сцепленными. Одно из достижений современной генетики и заключается в том, что созданы карты сцепления для многих признаков. На этих картах показано также относительное положение генов на хромосомах, эти карты имеют не только теоретическое, но и практическое значение.

Место, которое ген занимает на хромосоме, называется локусом. За исключением тех редких случаев, когда происходит перестройка хромосомы, у всех представителей отдельного биологического вида каждый ген имеет строго определенный локус. О существовании генов узнали по мутациям, которые обычно изменяют гены, делая их дефектными или необычными. Большинство наследственных признаков известны по таким наследственным заболеваниям, как гемофилия, дальтонизм и фенилкетонурия. Нормальные аллели гена называются дикими, хотя, как правило, этот термин применим только для некоторых организмов, с которыми проводят опыты. Гены, определяющие такие признаки человека, как цвет глаз или группу крови, обычно дикими не называются. В естественной популяции имеется много аллелей одного гена. Мутантный аллель можно использовать как маркер, помогающий определить местоположение гена. Например, дефектный ген гемоглобина, который вызывает серповидноклеточную анемию, можно использовать как маркер для определения локуса генов гемоглобина вообще. Без такого варианта гена у нас бы было мало возможностей исследовать эти гены.

Генетическая карта хромосомы представляет собой линию, на которой отмечены локусы генов и относительные в единицах карты. Хотя некоторые методы с использованием микроскопа позволяют ученым непосредственно определить локус гена на хромосоме, обычно устанавливают локус гена относительно других генов. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Распределение аллелей в этих организмах называется родительской комбинацией.

В профазе мейоза гомологичные пары выстаиваются напротив друг друга и удерживаются вместе в хиазмах, то есть в точках, где их хроматиды переплетаются друг с другом. Иногда в точке хиазмы хроматиды разрываются и обмениваются друг с другом сегментами. Такой процесс называется кроссинговером. Если кроссинговер происходит между локусами двух генов, то аллели этих генов перераспределяются между хромосомами.

Определить расстояние между генами человека – достаточно сложно. У большинства организмов, скрещивать которые можно по выбору, весь процесс состоит из двух стадий. Сначала скрещиваются между собой гомозиготы с нужными аллелями и получается и получается гетерозиготное потомство, у которого могут происходить рекомбинации; затем скрещиваются особи второго поколения, и изучается их потомство. У людей первая и вторая стадии соответствуют браку, над которым мы не властны, и поэтому остается только изучать потомков от таких браков. Установив расстояние между двумя генами, можно по одному добавлять и другие гены.

Легче всего определять положение генов, сцепленных с полом, потому что расположение аллелей как минимум одной из Х-хромосом женщины можно определить по Х-хромосоме ее отца, а генотип Х-хромосомы ее сыновей также определяется непосредственно. Построить карту аутосомных хромосом труднее. В наше время созданы превосходные карты для некоторых лабораторных и культурных растений и животных.

1.5 Репликация нуклеиновых кислот

При размножении любых форм жизни (кроме вирусов РНК-типа) происходит увеличение числа молекул ДНК. У многоклеточных организмов из двух слившихся гамет получается тысячи, миллионы или миллиарды клеток тела; у бактерий и простейших из одной родительской клетки возникают две, из них четыре и затем, в геометрической прогрессии, множество новых; у ДНК-содержащих вирусов вместо одного вириона образуется десятки и сотни вирионов следующего поколения. Во всех случаях каждая исходная молекула ДНК каким-то образом дает начало огромному числу новых, причем сохраняются в неизменном виде все особенности, присущие ДНК данного живого существа и различные у разных из них. Лишь очень редко, когда возникает мутация, происходят небольшие искажения этой хранящейся в ДНК генетической информации, но они крайне ничтожны по сравнению с колоссальным ее объемом, записанным в чередовании азотистых оснований молекулы.

Процесс получения двух копий (или реплик) изначальной молекулы ДНК называется репликацией, и модель Уотсона-Крика объясняет, как это возможно. В каждой молекуле ДНК одному нуклеотиду соответствует комплементарный ему нуклеотид, и одна цепь ДНК целиком комплементарна другой. Репликацию выполняет сложный фермент ДНК-полимераза, которая начинает разрывать двойную спираль, словно застежку-молнию, оставляя по одному основанию на каждой цепи. Суть процесса сводится к тому что молекулы ДНК-полимеразы движутся вдоль каждой цепи и синтезируют комплементарные цепи, образуя таким образом двойную спираль вместо одинарной. Каждое свободное основание связывается исключительно с компленментарным нуклеотидом. Например, открытый цитозин привлекает к себе новый гуанин, а открытый аденин – тимин. В клетке содержится достаточно свободных нуклеотидов, потому что в процессе метаболизма они образуются постоянно, и полимераза связывает парные основания вместе. Так, каждая цепь определяет формирование комплементарной ей цепи с последовательностью, идентичной последовательности прежней парной цепи. В конечном счете получаются две спирали, идентичные начальной молекуле.

Нуклеотидная последовательность ДНК должна хранить генетическую информацию, и последнее предположение, вытекающее из модели Уотсона – Крика, состоит в том, что мутации происходят в тех случаях, когда одно основание заменяется на другое или когда цепь рвется и перестраивается. Такое случается редко, но если происходит, то в клетке имеются механизмы исправления некоторых ошибок. Тем не менее в каждом организме содержится огромное количество ДНК, и если вероятность вставки ошибочного основания равна только одной миллионной, то на каждые 10 миллионов оснований будет приходится 10 ошибок, и мутация становится силой, с которой следует считаться.

1.6 Генетический код

Исследования, приведшие к расшифровке генетического кода, из которых особенно большое значение имени генетические работы Крика с сотрудниками в Англии и биохимические работы Ниренберга, Очоа и Корнберга в США, вскрыли следующие основные свойства кода:

1) Код неперекрывающийся.

К-во Просмотров: 190
Бесплатно скачать Контрольная работа: Молекулярно-генетический уровень живых структур