Контрольная работа: Момент силы. Пара сил и ее свойства
Единица момента силы:
[М] = [У7 ] [/; ] = сила х длина = ньютон х метр = Н • м.
Условимся считать момент силы положительным, если сила стремится вращать свое плечо вокруг центра момента против часовой стрелки, и наоборот (рис. 3.4).
Одна и та же сила относительно разных точек может давать и положительный и отрицательный момент.
Момент силы относительно точки, лежащейна линии действия этой силы, равен нулю, так как в этом случае плечо равно нулю.
Момент силы относительно точки не меняется при перенесении силы вдоль линии ее действия, так как модуль силы и плечо остаются неизменными.
5. Проекция силы на координатную ось
В тех случаях, когда на тело действует более трех сил, а также когда неизвестны направления некоторых сил, удобнее при решении задач пользоваться не геометрическим, а аналитическим условием равновесия, которое основано на методе проекций.
Проекцией силы на ось называется отрезок оси, заключенный между двумя перпендикулярами, опущенными на ось из начала и конца вектора силы.
Пусть даны координатные оси х, у, сила Р, приложенная в точке А и расположенная в плоскости координатных осей.
Проекциями силы Р на оси будут отрезки аЬ и а'Ь'. Обозначим эти проекции соответственно Рх и Ру . Тогда
РХ = Р cos(x); Ру = Рsin(x).
Проекция силы на ось есть величина алгебраическая, которая может быть положительной или отрицательной, что устанавливается по направлению проекции. За направление проекции примем направление от проекции начала к проекции конца вектора силы.
Установим следующее правило знаков: если направление проекции силы на ось совпадает с положительным направлением оси, то эта проекция считается положительной, и наоборот.
Если вектор силы параллелен оси, то он проецируется на эту ось в натуральную величину.
Если вектор силы перпендикулярен оси, то его проекция на эту ось равна нулю Зная две проекции Рх и Ру , из треугольника ЛВС определяем модуль и направление вектора силы Р по следующим формулам:
Р = у /Р* + Р*, направляющий тангенс угла между вектором силы Р и осью х 1ё а = Ру /Рх .
Отметим, что силу Р можно представить как равнодействующую двух составляющих сил Рх и Р, параллельных осям координат (рис. 2.3). Составляющие Рх и Ру и проекции Рх и Ру принципиально отличны друг от друга, так как составляющая есть величина векторная, а проекция — величина алгебраическая; но проекции силы на две взаимно перпендикулярные оси х и у и модули составляющих той же силы соответственно численно равны, когда сила разлагается по двум взаимно перпендикулярным направлениям, параллельным осям х и у.
Очевидно, что, согласно третьему закону Ньютона (аксиома взаимодействия), внутренние силы, действующие в сечении оставшейся и отброшенной частей тела, равны по модулю, но противоположны по направлению. Таким образом, рассматривая равновесие любой из двух частей рассеченного тела, мы получим одно и то же значение внутренних сил, однако выгоднее рассматривать ту часть тела, для которой уравнения равновесия проще.
Далее перейдем к рассмотрению основных деформаций. Из практики известно, что в процессе эксплуатации элементы конструкций испытывают следующие основные деформации:
1. растяжение; эту деформацию испытывают, например, канаты, тросы, цепи, шток протяжного станка;
2. сжатие; на сжатие работают, например, колонны, кирпичная кладка, пуансоны штампов;
3. сдвиг; деформацию сдвига испытывают заклепки, болты, шпонки, швы сварных соединений. Деформацию сдвига, до- веденную до разрушения материала, называют срезом. Срез возникает, например, при резке ножницами или штамповке деталей из листового материала;
4. кручение; на кручение работают валы, передающие мощность при вращательном движении. Обычно деформация кручения сопровождается другими деформациями, например изгибом;
5. изгиб; на изгиб работают балки, оси, зубья зубчатых колес и другие элементы конструкций.
Очень часто элементы конструкций подвергаются действию нагрузок, вызывающих одновременно несколько основных деформаций. Так, например, в теоретической механике мы рассмотрели усилия, действующие на колесо червячной передачи. Очевидно, что в этом случае возникают следующие деформации вала червячного колеса:
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635 — 1703).
Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формулируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.
Коэффициент пропорциональности Е характеризует жесткость материала, т.е. его способность сопротивляться упругим деформациям растяжения или сжатия, и называется модулем продольной упругости или модулем упругости первого рода.