Контрольная работа: Некоторые аспекты правовой статистики
Использование в статистических исследованиях ЭВМ и статистической теории распознавания образов позволило разработать метод группировки совокупности единиц одновременно по множеству характеризующих признаков. Такие группировки получили название многомерных.
Многомерная группировка или многомерная классификация основана на измерении сходства или различия между объектами (единицами): единицы, отнесенные к одной группе (классу), различаются между собой меньше, чем единицы, отнесенные к различным группам (классам). Мерой близости (сходства) между объектами могут служить различные критерии. Самой распространенной мерой близости является евклидово расстояние между объектами, представленными точками в n-мерном пространстве. Чем меньше это расстояние, тем больше близость.
Задача многомерной группировки сводится к выделению сгущений точек (объектов) в n-мерном пространстве. Группы (кластеры) формируются на основании близости объектов одновременно по всему комплексу признаков, описывающих объект. Нахождение этих групп осуществляется методами кластерного анализа на ЭВМ.
Многомерные группировки позволяют решать целый ряд таких важных задач экономико-статистического исследования, как формирование однородных совокупностей, выбор существенных признаков, выделение типичных групп объектов и др. В зависимости от вида группировочных признаков различают группировки по атрибутивным и количественным признакам. Если атрибутивный признак имеет мало разновидностей, то количество групп определяется числом этих разновидностей. Таковы, например, группировки населения по полу, семейному положению, образованию; распределение населения на городское и сельское. Определение числа групп при группировке по варьирующему количественному признаку (например, распределение населения по уровню доходов, потреблению отдельных продуктов питания и др.) требует специальных расчетов.
5. Величины степени и сравнения
Относительные величины степени и сравнения позволяют сопоставлять различные показатели в целях выявления, какая величина и на сколько больше другой, в какой мере одно явление отличается от другого или схоже с ним, что имеется общего и отличительного в наблюдаемых статистических процессах и т.д. Сравнительный анализ количественных показателей – один из важных приемов в юридической практике статистических обобщений. Он сопровождает все виды относительных и средних величин. В той или иной мере мы апеллировали к методам сравнения при рассмотрении аналитических возможностей относительных величин распределения, интенсивности, динамики.
1 Показатели распределения или структуры совокупности обычно измеряются в процентах удельных весов и открывают большие возможности для сопоставлений.
2 Показатели отношения части к целому, или отношения интенсивности, чаще всего измеряются в коэффициентах (в числе преступлений, осужденных, дел, исков и т.д.) на 100 тыс. населения. Этот относительный показатель был разработан не только для более объективной оценки массовых явлений, но и для сравнения несопоставимых абсолютных величин. Несопоставимые сведения о деятельности юридических учреждений, гражданском и уголовном судопроизводстве, судимости, преступности, правонарушаемости, зафиксированные в разных странах, регионах, районах и населенных пунктах, после пересчета на население становятся более или менее сопоставимыми и сравнимыми.
6. Средняя арифметическая величина
Средняя арифметическая является наиболее распространенным видом степенных средних, используется в случаях, когда объём усредняемого признака является аддитивной величиной, т.е. образуется как сумма его значений по всем единицам статистической совокупности. При этом если индивидуальные значения признака у статистических единиц заменить средней арифметической, то суммарный объем признака по совокупности в целом сохраняется неизменным. Это означает, что средняя арифметическая есть среднее слагаемое.
Средняя арифметическая простая используется при работе с несгруппированными данными и рассчитывается по формуле:
Если в исходных данных отдельные значения усредняемого признака повторятся, то расчет средней проводится по сгруппированным данным или вариационным рядам. В подобных случаях для расчета необходимо применять среднюю арифметическую взвешенную – среднюю сгруппированных величин.
частость, т. е. удельный вес статистических единиц, обладающих определенным значением признака в общем объеме совокупности.
Средняя арифметическая обладает рядом полезных свойств, к важнейшим из которых относятся:
1. Средняя арифметическая постоянной величины равна этой величине:
2. Алгебраическая сумма отклонений вариант от их средней арифметической равно нулю:
3. Если все варианты уменьшить (увеличить) на постоянное число А, то средняя арифметическая из них уменьшится (увеличится) на это же число:
4. Если все варианты одинаково увеличить (уменьшить) в одно и то же число раз, то средняя арифметическая увеличится (уменьшится) во столько же раз:
5. Если все веса средней одинаково увеличить (уменьшить) в несколько раз, то средняя арифметическая не изменится
Практическая часть
Задание 7